In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step ...In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.展开更多
During the compaction of a road subgrade, the mechanical parameters of the soil mass change in real time, but current research assumes that these parameters remain unchanged. In order to address this discrepancy, this...During the compaction of a road subgrade, the mechanical parameters of the soil mass change in real time, but current research assumes that these parameters remain unchanged. In order to address this discrepancy, this paper establishes a relationship between the degree of compaction K and strain ε. The relationship between the compaction degree K and the shear strength of soil(cohesion c and frictional angle φ) was clearly established through indoor experiments. The subroutine UMAT in ABAQUS finite element numerical software was developed to realize an accurate calculation of the subgrade soil compaction quality. This value was compared and analyzed against the assumed compaction value of the model, thereby verifying the accuracy of the intelligent compaction calculation results for subgrade soil. On this basis, orthogonal tests of the influential factors(frequency, amplitude, and quality) for the degree of compaction and sensitivity analysis were carried out. Finally, the ‘acceleration intelligent compaction value’, which is based on the acceleration signal, is proposed for a compaction meter value that indicates poor accuracy. The research results can provide guidance and basis for further research into the accurate control of compaction quality for roadbeds and pavements.展开更多
When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensio...When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case.展开更多
On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the de...On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the development law and deformation property of axial force of pile body, shaft resistance of pile, and cumulative settlement of pile head under vertical cyclic dynamic loads were concluded. Through the comparison and analysis of the test results of dynamic models, the test results of Poulos(1989) and cumulative settlement model of the single pile under cyclic loads were confirmed. Based on the above research, Fortran language was adopted to introduce the soil attenuation factor, the secondary development of relevant modules of ABAQUS was carried out, and the effect of soil attenuation factor on dynamic property of pile-soil was discussed further.展开更多
Supercavitation is a revolutionary technique to achieve high drag reduction for underwater vehicle.It can help us to break through the conventional speed barrier.This article presents a numerical algorithm for ventila...Supercavitation is a revolutionary technique to achieve high drag reduction for underwater vehicle.It can help us to break through the conventional speed barrier.This article presents a numerical algorithm for ventilated supercavitation flow field based on mixture multiphase flow model,briefs the calculation results and compares them with that tested in high-speed water tunnel and towing tank.The mathematical model,its numerical calculation method,computational region and boundary conditions are discussed in detail.Some pertinent nondimensional parameters about the ventilated supercavitation,such as geometrical configuration of supercavity,drag coefficient and ventilation rate are investigated.Reynolds number is selected to predict gas ventilation rate instead of Froude number.Finally,based on the test and simulation results,a semi-empirical formula of the ventilation rate estimation suitable for different conical angle caritators is proposed.展开更多
In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earli...In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.展开更多
A class of hybrid algorithms of real-time simulation based on evaluation of non-integerstep right-hand side function are presented in this paper. And some results of the convergence and stability of the algorithms are...A class of hybrid algorithms of real-time simulation based on evaluation of non-integerstep right-hand side function are presented in this paper. And some results of the convergence and stability of the algorithms are given. Using the class of algorithms, evaluation for the right-hand side function is needed once in every integration-step. Moreover, comparing with the other methods with the same amount of work, their numerical stability regions are larger and the method errors are smaller, and the numerical experiments show that the algorithms are very effective.展开更多
A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- ...A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- obstaclestraight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1∶1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control.展开更多
As a new type of structure which has never been built, submerged floating tunnel was studied mainly by numerical simulations. To further study the seismic response of a submerged floating tunnel, the first model exper...As a new type of structure which has never been built, submerged floating tunnel was studied mainly by numerical simulations. To further study the seismic response of a submerged floating tunnel, the first model experiment of submerged floating tunnel (SFT) under the earthquake was carried out on the unique underwater shaking table in China. The experimental results show that vertical excitation induces larger response than horizontal and different inclination degrees of the tether also cause different seismic responses. Subsequently, based on the fluid-structure interaction theory, the corresponding numerical model is established. And comparing the numerical results with the experimental results, those of shaking table test. Numerical model adopted is effective for it is shown that the numerical results are basically identical with dynamic response of SFT.展开更多
As a green environmentally-friendly material,rubberised concrete(Ru C),which has the characteristics of low elastic modulus,large deformation capacity,high damping,good energy dissipation and good crack resistance,has...As a green environmentally-friendly material,rubberised concrete(Ru C),which has the characteristics of low elastic modulus,large deformation capacity,high damping,good energy dissipation and good crack resistance,has attracted extensive attention and research in the civil engineering discipline.However,most of existing studies are based on experimental tests on Ru C material properties,and there has been no numerical study based on meso-scale modelling of Ru C yet.To more comprehensively investigate the Ru C dynamic material properties without conducting intensive experimental tests,this study developed a high-fidelity meso-scale model considering coarse and fine aggregates and rubber crumbs to numerically investigate the mechanical properties of rubberised concrete under different strain rates.The meso-scale model was verified against both quasi-static compressive testing data and Split Hopkinson Pressure Bar(SHPB)dynamic testing data.Using the verified numerical model,the dynamic properties of rubberised concrete with various rubber content(0%-30%)under different strain rates were studied.The numerical results show that the developed meso-scale model can use to predict the static and dynamic properties of rubberised concrete with high accuracy.The dynamic compressive strength of the rubberised concrete increases with the increment of the strain rate,and the strain rate sensitivity increases with the rubber content ranging from 0 to 30%.Based on intensive numerical simulation data,empirical DIFs is used as a function of strain rate and rubber content to predict the dynamic strength of rubberised concrete.展开更多
The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Bas...The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Based on the theories of dynamic strength and failure criterion of dynamic rock, the rock dynamic damage and the evolution of pre-crack seam were simulated by the tensile damage and shear failure of the model. According to the actual situation of No. 92 ore body test stope at Tongkeng Mine, the formation process of the pre-crack blast seam was simulated by Ansys/Ls-dyna software, the pre-crack seam was inspected by a system of digital panoramic borehole camera. The pre-crack seam was inspected by the system of digital panoramic borehole in the roof. The results of the numerical simulation and inspection show that in the line of centers of pre-hole, the minimum of the tensile stress reaches 20 MPa, which is much larger than 13.7 MPa of the dynamic tensile strength of rock. The minimum particle vibration velocity reaches 50 cm/s, which is greater than 30-40 cm/s of the allowable vibration velocity. It is demonstrated that the rock is destroyed near the center line and the pre-crack is successfully formed by the large diameters and large distances pre-crack holes in the roof.展开更多
The quantitative analysis of uplift process of the Qinghai—Tibet plateau is a key to deepen the study of uplift mechanism and dynamic model, for this, numerical simulate was done to the whole process of uplift of the...The quantitative analysis of uplift process of the Qinghai—Tibet plateau is a key to deepen the study of uplift mechanism and dynamic model, for this, numerical simulate was done to the whole process of uplift of the Qinghai—Tibet plateau.1 Geological model According to the tectonic evolution and lithospheric structure, continental crust in the Qinghai—Tibet plateau in profile is divided into sedimentary cover, crystalline rock formation and lower crust and composed of Kunlun, Bayan Har, Qiangtang, Gangdise and Himalaya blocks on the plane. Layer or block is bounded the detachment layer or large fault. On the basis of the uplift characteristics, the calculated time limit is in the Cenozoic since 65Ma, roughly four stages, i.e., 65 to 40Ma, 40 to 20Ma, 20 to 3Ma and 3Ma to now. Mesh profile used Yadong—Golmud Geoscience transect.展开更多
A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate...A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.展开更多
This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high e...This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high explosive simulations is the ability to accurately define the initial blastwave properties that arise from the ignition and consequent explosion.Specialised codes often employ Jones-Wilkins-Lee(JWL)or similar equation of state(EOS)to simulate blasts.However,most available CFD codes are limited in terms of EOS modelling.They are restrictive to the Ideal Gas Law(IGL)for compressible flows,which is generally unsuitable for blast simulations.To this end,this paper presents a numerical approach to simulate blastwave propagation for any generic CFD code using the IGL EOS.A new method known as the Input Cavity Method(ICM)is defined where input conditions of the high explosives are given in the form of pressure,velocity and temperature time-history curves.These time history curves are input at a certain distance from the centre of the charge.It is shown that the ICM numerical method can accurately predict over-pressure and impulse time history at measured locations for the incident,reflective and complex multiple reflection scenarios with high numerical accuracy compared to experimental measurements.The ICM is compared to the Pressure Bubble Method(PBM),a common approach to replicating initial conditions for a high explosive in Finite Volume modelling.It is shown that the ICM outperforms the PBM on multiple fronts,such as peak values and overall overpressure curve shape.Finally,the paper also presents the importance of choosing an appropriate solver between the Pressure Based Solver(PBS)and Density-Based Solver(DBS)and provides the advantages and disadvantages of either choice.In general,it is shown that the PBS can resolve and capture the interactions of blastwaves to a higher degree of resolution than the DBS.This is achieved at a much higher computational cost,showing that the DBS is much preferred for quick turnarounds.展开更多
基金Project(41630642)supported by the Key Project of National Natural Science Foundation of ChinaProject(51974360)supported by the National Natural Science Foundation of ChinaProject(2018JJ3656)supported by the Natural Science Foundation of Hunan Province,China。
文摘In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.
基金Project(51878164) supported by the National Natural Science Foundation of ChinaProjects(BK20161421, BK20140109) supported by the Natural Science Foundation of Jiangsu Province, China+4 种基金Project(141076) supported by the Huoyingdong Foundation of the Ministry of Education of ChinaProject(BZ2017011) supported by the Science and Technology Support Project of Jiangsu Province, ChinaProject(2242015R30027) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(grant number KFJ170106) supported by the Changsha University of Science & Technology via Open Fund of National Engineering Laboratory of Highway Maintenance Technology, ChinaProject(2018B51) supported by the Science and Technology Support Project of Qilu Transportation Development Group, China。
文摘During the compaction of a road subgrade, the mechanical parameters of the soil mass change in real time, but current research assumes that these parameters remain unchanged. In order to address this discrepancy, this paper establishes a relationship between the degree of compaction K and strain ε. The relationship between the compaction degree K and the shear strength of soil(cohesion c and frictional angle φ) was clearly established through indoor experiments. The subroutine UMAT in ABAQUS finite element numerical software was developed to realize an accurate calculation of the subgrade soil compaction quality. This value was compared and analyzed against the assumed compaction value of the model, thereby verifying the accuracy of the intelligent compaction calculation results for subgrade soil. On this basis, orthogonal tests of the influential factors(frequency, amplitude, and quality) for the degree of compaction and sensitivity analysis were carried out. Finally, the ‘acceleration intelligent compaction value’, which is based on the acceleration signal, is proposed for a compaction meter value that indicates poor accuracy. The research results can provide guidance and basis for further research into the accurate control of compaction quality for roadbeds and pavements.
基金Projects(51878190,51779031,51678170)supported by the National Natural Science Foundation of China。
文摘When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case.
基金Projects(51478178,51508181) supported by the National Natural Science Foundation of China
文摘On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the development law and deformation property of axial force of pile body, shaft resistance of pile, and cumulative settlement of pile head under vertical cyclic dynamic loads were concluded. Through the comparison and analysis of the test results of dynamic models, the test results of Poulos(1989) and cumulative settlement model of the single pile under cyclic loads were confirmed. Based on the above research, Fortran language was adopted to introduce the soil attenuation factor, the secondary development of relevant modules of ABAQUS was carried out, and the effect of soil attenuation factor on dynamic property of pile-soil was discussed further.
基金Sponsored by National Basic Research Programof China(K1804061802)
文摘Supercavitation is a revolutionary technique to achieve high drag reduction for underwater vehicle.It can help us to break through the conventional speed barrier.This article presents a numerical algorithm for ventilated supercavitation flow field based on mixture multiphase flow model,briefs the calculation results and compares them with that tested in high-speed water tunnel and towing tank.The mathematical model,its numerical calculation method,computational region and boundary conditions are discussed in detail.Some pertinent nondimensional parameters about the ventilated supercavitation,such as geometrical configuration of supercavity,drag coefficient and ventilation rate are investigated.Reynolds number is selected to predict gas ventilation rate instead of Froude number.Finally,based on the test and simulation results,a semi-empirical formula of the ventilation rate estimation suitable for different conical angle caritators is proposed.
文摘In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.
文摘A class of hybrid algorithms of real-time simulation based on evaluation of non-integerstep right-hand side function are presented in this paper. And some results of the convergence and stability of the algorithms are given. Using the class of algorithms, evaluation for the right-hand side function is needed once in every integration-step. Moreover, comparing with the other methods with the same amount of work, their numerical stability regions are larger and the method errors are smaller, and the numerical experiments show that the algorithms are very effective.
文摘A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- obstaclestraight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1∶1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control.
基金Projects(51108224,51179026) supported by the National Natural Science Foundation of China
文摘As a new type of structure which has never been built, submerged floating tunnel was studied mainly by numerical simulations. To further study the seismic response of a submerged floating tunnel, the first model experiment of submerged floating tunnel (SFT) under the earthquake was carried out on the unique underwater shaking table in China. The experimental results show that vertical excitation induces larger response than horizontal and different inclination degrees of the tether also cause different seismic responses. Subsequently, based on the fluid-structure interaction theory, the corresponding numerical model is established. And comparing the numerical results with the experimental results, those of shaking table test. Numerical model adopted is effective for it is shown that the numerical results are basically identical with dynamic response of SFT.
文摘As a green environmentally-friendly material,rubberised concrete(Ru C),which has the characteristics of low elastic modulus,large deformation capacity,high damping,good energy dissipation and good crack resistance,has attracted extensive attention and research in the civil engineering discipline.However,most of existing studies are based on experimental tests on Ru C material properties,and there has been no numerical study based on meso-scale modelling of Ru C yet.To more comprehensively investigate the Ru C dynamic material properties without conducting intensive experimental tests,this study developed a high-fidelity meso-scale model considering coarse and fine aggregates and rubber crumbs to numerically investigate the mechanical properties of rubberised concrete under different strain rates.The meso-scale model was verified against both quasi-static compressive testing data and Split Hopkinson Pressure Bar(SHPB)dynamic testing data.Using the verified numerical model,the dynamic properties of rubberised concrete with various rubber content(0%-30%)under different strain rates were studied.The numerical results show that the developed meso-scale model can use to predict the static and dynamic properties of rubberised concrete with high accuracy.The dynamic compressive strength of the rubberised concrete increases with the increment of the strain rate,and the strain rate sensitivity increases with the rubber content ranging from 0 to 30%.Based on intensive numerical simulation data,empirical DIFs is used as a function of strain rate and rubber content to predict the dynamic strength of rubberised concrete.
基金Project(2006BAB02A02)supported by the National Key Technology R&D Program for the 11th Five-year Plan of ChinaProject(09JJ4025)supported by the National Natural Science Foundation of Hunan Province,ChinaProject(51074178)supported by the National Natural Science Foundation of China
文摘The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Based on the theories of dynamic strength and failure criterion of dynamic rock, the rock dynamic damage and the evolution of pre-crack seam were simulated by the tensile damage and shear failure of the model. According to the actual situation of No. 92 ore body test stope at Tongkeng Mine, the formation process of the pre-crack blast seam was simulated by Ansys/Ls-dyna software, the pre-crack seam was inspected by a system of digital panoramic borehole camera. The pre-crack seam was inspected by the system of digital panoramic borehole in the roof. The results of the numerical simulation and inspection show that in the line of centers of pre-hole, the minimum of the tensile stress reaches 20 MPa, which is much larger than 13.7 MPa of the dynamic tensile strength of rock. The minimum particle vibration velocity reaches 50 cm/s, which is greater than 30-40 cm/s of the allowable vibration velocity. It is demonstrated that the rock is destroyed near the center line and the pre-crack is successfully formed by the large diameters and large distances pre-crack holes in the roof.
文摘The quantitative analysis of uplift process of the Qinghai—Tibet plateau is a key to deepen the study of uplift mechanism and dynamic model, for this, numerical simulate was done to the whole process of uplift of the Qinghai—Tibet plateau.1 Geological model According to the tectonic evolution and lithospheric structure, continental crust in the Qinghai—Tibet plateau in profile is divided into sedimentary cover, crystalline rock formation and lower crust and composed of Kunlun, Bayan Har, Qiangtang, Gangdise and Himalaya blocks on the plane. Layer or block is bounded the detachment layer or large fault. On the basis of the uplift characteristics, the calculated time limit is in the Cenozoic since 65Ma, roughly four stages, i.e., 65 to 40Ma, 40 to 20Ma, 20 to 3Ma and 3Ma to now. Mesh profile used Yadong—Golmud Geoscience transect.
基金Project(10772113) supported by the National Natural Science Foundation of China
文摘A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.
文摘This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high explosive simulations is the ability to accurately define the initial blastwave properties that arise from the ignition and consequent explosion.Specialised codes often employ Jones-Wilkins-Lee(JWL)or similar equation of state(EOS)to simulate blasts.However,most available CFD codes are limited in terms of EOS modelling.They are restrictive to the Ideal Gas Law(IGL)for compressible flows,which is generally unsuitable for blast simulations.To this end,this paper presents a numerical approach to simulate blastwave propagation for any generic CFD code using the IGL EOS.A new method known as the Input Cavity Method(ICM)is defined where input conditions of the high explosives are given in the form of pressure,velocity and temperature time-history curves.These time history curves are input at a certain distance from the centre of the charge.It is shown that the ICM numerical method can accurately predict over-pressure and impulse time history at measured locations for the incident,reflective and complex multiple reflection scenarios with high numerical accuracy compared to experimental measurements.The ICM is compared to the Pressure Bubble Method(PBM),a common approach to replicating initial conditions for a high explosive in Finite Volume modelling.It is shown that the ICM outperforms the PBM on multiple fronts,such as peak values and overall overpressure curve shape.Finally,the paper also presents the importance of choosing an appropriate solver between the Pressure Based Solver(PBS)and Density-Based Solver(DBS)and provides the advantages and disadvantages of either choice.In general,it is shown that the PBS can resolve and capture the interactions of blastwaves to a higher degree of resolution than the DBS.This is achieved at a much higher computational cost,showing that the DBS is much preferred for quick turnarounds.