The traditional calculation method of frequency-domain Green function mainly utilizes series or asymptotic expansion to carry out numerical approximation, however, this method requires very careful zoning, thus the co...The traditional calculation method of frequency-domain Green function mainly utilizes series or asymptotic expansion to carry out numerical approximation, however, this method requires very careful zoning, thus the computing process is complex with many cycles, which has greatly affected the computing efficiency. To improve the computing efficiency, this paper introduces Gaussian integral to the numerical calculation of the frequency-domain Green function and its partial derivatives. It then compares the calculation result with that in existing references. The comparison results demonstrate that, on the basis of its sufficient accuracy, the method has greatly simplified the computing process, reduced the zoning and improved the computing efficiency.展开更多
Fractional calculus is a 300 years topic,which has been introduced to real physics systems modeling and engineering applications.In the last few decades,fractional-order nonlinear chaotic systems have been widely inve...Fractional calculus is a 300 years topic,which has been introduced to real physics systems modeling and engineering applications.In the last few decades,fractional-order nonlinear chaotic systems have been widely investigated.Firstly,the most used methods to solve fractional-order chaotic systems are reviewed.Characteristics and memory effect in those method are summarized.Then we discuss the memory effect in the fractional-order chaotic systems through the fractionalorder calculus and numerical solution algorithms.It shows that the integer-order derivative has full memory effect,while the fractional-order derivative has nonideal memory effect due to the kernel function.Memory loss and short memory are discussed.Finally,applications of the fractional-order chaotic systems regarding the memory effects are investigated.The work summarized in this manuscript provides reference value for the applied scientists and engineering community of fractional-order nonlinear chaotic systems.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.50779007the National Science Foundation for Young Scientists of China under Grant No.50809018+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070217074the Defence Advance Research Program of Science and Technology of Ship Industry under Grant No.07J1.1.6Harbin Engineering University Foundation under Grant No.HEUFT07069
文摘The traditional calculation method of frequency-domain Green function mainly utilizes series or asymptotic expansion to carry out numerical approximation, however, this method requires very careful zoning, thus the computing process is complex with many cycles, which has greatly affected the computing efficiency. To improve the computing efficiency, this paper introduces Gaussian integral to the numerical calculation of the frequency-domain Green function and its partial derivatives. It then compares the calculation result with that in existing references. The comparison results demonstrate that, on the basis of its sufficient accuracy, the method has greatly simplified the computing process, reduced the zoning and improved the computing efficiency.
基金supported by the Natural Science Foundation of China(Grant Nos.61901530,62071496,and 62061008)the Natural Science Foundation of Hunan Province,China(Grant No.2020JJ5767).
文摘Fractional calculus is a 300 years topic,which has been introduced to real physics systems modeling and engineering applications.In the last few decades,fractional-order nonlinear chaotic systems have been widely investigated.Firstly,the most used methods to solve fractional-order chaotic systems are reviewed.Characteristics and memory effect in those method are summarized.Then we discuss the memory effect in the fractional-order chaotic systems through the fractionalorder calculus and numerical solution algorithms.It shows that the integer-order derivative has full memory effect,while the fractional-order derivative has nonideal memory effect due to the kernel function.Memory loss and short memory are discussed.Finally,applications of the fractional-order chaotic systems regarding the memory effects are investigated.The work summarized in this manuscript provides reference value for the applied scientists and engineering community of fractional-order nonlinear chaotic systems.