In this paper, we study the strong consistency for partitioning estimation of regression function under samples that axe φ-mixing sequences with identically distribution.Key words: nonparametric regression function; ...In this paper, we study the strong consistency for partitioning estimation of regression function under samples that axe φ-mixing sequences with identically distribution.Key words: nonparametric regression function; partitioning estimation; strong convergence;φ-mixing sequences.展开更多
A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways,...A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective.展开更多
This paper introduces a method of bootstrap wavelet estimation in a non-parametric regression model with weakly dependent processes for both fixed and random designs. The asymptotic bounds for the bias and variance of...This paper introduces a method of bootstrap wavelet estimation in a non-parametric regression model with weakly dependent processes for both fixed and random designs. The asymptotic bounds for the bias and variance of the bootstrap wavelet estimators are given in the fixed design model. The conditional normality for a modified version of the bootstrap wavelet estimators is obtained in the fixed model. The consistency for the bootstrap wavelet estimator is also proved in the random design model. These results show that the bootstrap wavelet method is valid for the model with weakly dependent processes.展开更多
In this paper, by using some inequalities of negatively orthant dependent(NOD,in short) random variables and the truncated method of random variables, we investigate the nonparametric regression model. The complete co...In this paper, by using some inequalities of negatively orthant dependent(NOD,in short) random variables and the truncated method of random variables, we investigate the nonparametric regression model. The complete consistency result for the estimator of g(x) is presented.展开更多
For the nonparametric regression model Y-ni = g(x(ni)) + epsilon(ni)i = 1, ..., n, with regularly spaced nonrandom design, the authors study the behavior of the nonlinear wavelet estimator of g(x). When the threshold ...For the nonparametric regression model Y-ni = g(x(ni)) + epsilon(ni)i = 1, ..., n, with regularly spaced nonrandom design, the authors study the behavior of the nonlinear wavelet estimator of g(x). When the threshold and truncation parameters are chosen by cross-validation on the everage squared error, strong consistency for the case of dyadic sample size and moment consistency for arbitrary sample size are established under some regular conditions.展开更多
This paper considers local median estimation in fixed design regression problems. The proposed method is employed to estimate the median function and the variance function of a heteroscedastic regression model. Strong...This paper considers local median estimation in fixed design regression problems. The proposed method is employed to estimate the median function and the variance function of a heteroscedastic regression model. Strong convergence rates of the proposed estimators are obtained. Simulation results are given to show the performance of the proposed methods.展开更多
Consider the nonparametric median regression model Y-ni = g(x(ni)) + epsilon(ni), 1 less than or equal to i less than or equal to n, where Y-ni's are the observations at the fixed design points x(ni) is an element...Consider the nonparametric median regression model Y-ni = g(x(ni)) + epsilon(ni), 1 less than or equal to i less than or equal to n, where Y-ni's are the observations at the fixed design points x(ni) is an element of [0, 1], is an element of(ni)'s are independent identically distributed random variables with median zero, g(x) is the smooth function of interest, Suppose the local median estimate (g) over tilde(n, h)(x) of g(x) admits the Bahadur's representation. Under some regular conditions, the relative stability of the local median estimate is established in the L-2 sense.展开更多
基金Supported by the Science Development Foundation of HFUT(041002F)
文摘In this paper, we study the strong consistency for partitioning estimation of regression function under samples that axe φ-mixing sequences with identically distribution.Key words: nonparametric regression function; partitioning estimation; strong convergence;φ-mixing sequences.
基金The Project of Research on Technologyand Devices for Traffic Guidance (Vehicle Navigation)System of Beijing Municipal Commission of Science and Technology(No H030630340320)the Project of Research on theIntelligence Traffic Information Platform of Beijing Education Committee
文摘A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective.
基金This paper is supported by NNSF project(10371059)China and Youth Teacher Foundation of Nankai University
文摘This paper introduces a method of bootstrap wavelet estimation in a non-parametric regression model with weakly dependent processes for both fixed and random designs. The asymptotic bounds for the bias and variance of the bootstrap wavelet estimators are given in the fixed design model. The conditional normality for a modified version of the bootstrap wavelet estimators is obtained in the fixed model. The consistency for the bootstrap wavelet estimator is also proved in the random design model. These results show that the bootstrap wavelet method is valid for the model with weakly dependent processes.
基金Supported by the Research Teaching Model Curriculum of Anhui University(xjyjkc1407)Supported by the Students Innovative Training Project of Anhui University(201310357004,201410357117,201410357249)Supported by the Quality Improvement Projects for Undergraduate Education of Anhui University(ZLTS2015035)
文摘In this paper, by using some inequalities of negatively orthant dependent(NOD,in short) random variables and the truncated method of random variables, we investigate the nonparametric regression model. The complete consistency result for the estimator of g(x) is presented.
文摘For the nonparametric regression model Y-ni = g(x(ni)) + epsilon(ni)i = 1, ..., n, with regularly spaced nonrandom design, the authors study the behavior of the nonlinear wavelet estimator of g(x). When the threshold and truncation parameters are chosen by cross-validation on the everage squared error, strong consistency for the case of dyadic sample size and moment consistency for arbitrary sample size are established under some regular conditions.
基金The first author’s research was supported by the National Natural Science Foundation of China(Grant No.198310110 and Grant No.19871003)the partly support of the Doctoral Foundation of China and the last three authors’research was supported by a gra
文摘This paper considers local median estimation in fixed design regression problems. The proposed method is employed to estimate the median function and the variance function of a heteroscedastic regression model. Strong convergence rates of the proposed estimators are obtained. Simulation results are given to show the performance of the proposed methods.
文摘Consider the nonparametric median regression model Y-ni = g(x(ni)) + epsilon(ni), 1 less than or equal to i less than or equal to n, where Y-ni's are the observations at the fixed design points x(ni) is an element of [0, 1], is an element of(ni)'s are independent identically distributed random variables with median zero, g(x) is the smooth function of interest, Suppose the local median estimate (g) over tilde(n, h)(x) of g(x) admits the Bahadur's representation. Under some regular conditions, the relative stability of the local median estimate is established in the L-2 sense.