In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some e...In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some exact explicit travelling solitary wave solutions for the above equation are obtained. As a result, some minor errors and some known results in the previousl literature are clarified and improved.展开更多
: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati tech...: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article.展开更多
In this article, we consider the controllability of a quasi-linear heat equation involving gradient terms with Dirichlet boundary conditions in a bounded domain of RN.The results are established by using the variation...In this article, we consider the controllability of a quasi-linear heat equation involving gradient terms with Dirichlet boundary conditions in a bounded domain of RN.The results are established by using the variational methods, the related duality theory and Kakutani Fixed-point Theorem.展开更多
By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral dela...By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.展开更多
In this paper,we study the blow-up of solutions to a semi-linear wave equation with a nonlinear memory term of derivative type.By using methods of an iteration argument and di erential inequalities,we obtain the blow-...In this paper,we study the blow-up of solutions to a semi-linear wave equation with a nonlinear memory term of derivative type.By using methods of an iteration argument and di erential inequalities,we obtain the blow-up result for the semi-linear wave equation when the exponent of p is under certain conditions.Meanwhile,we derive an upper bound of the lifespan of solutions to the Cauchy problem for the semi-linear wave equation.展开更多
In this paper, we obtain some nonoscillatory theories of the functional differential equation (r(t)ψ(x(t))x (t)) + f(t, x(t), x(σ(t))) = 0, t ≥ t 0 , where r ∈ C 1 ([t 0 , ∞); (0, ∞)), ψ∈ C 1 (R, R) and f ∈ C...In this paper, we obtain some nonoscillatory theories of the functional differential equation (r(t)ψ(x(t))x (t)) + f(t, x(t), x(σ(t))) = 0, t ≥ t 0 , where r ∈ C 1 ([t 0 , ∞); (0, ∞)), ψ∈ C 1 (R, R) and f ∈ C([t 0 , ∞) × R × R, R).展开更多
In this paper, we introduce and propose exact and explicit analytical solutions to a novel model of the nonlinear Schr¨odinger(NLS) equation. This model is derived as the equation governing the dynamics of modula...In this paper, we introduce and propose exact and explicit analytical solutions to a novel model of the nonlinear Schr¨odinger(NLS) equation. This model is derived as the equation governing the dynamics of modulated cutoff waves in a discrete nonlinear electrical lattice. It is characterized by the addition of two terms that involve time derivatives to the classical equation. Through those terms, our model is also tantamount to a generalized NLS equation with saturable;which suggests that the discrete electrical transmission lines can potentially be used to experimentally investigate wave propagation in media that are modeled by such type of nonlinearity. We demonstrate that the new terms can enlarge considerably the forms of the solutions as compared to similar NLS-type equations. Sine–Gordon expansion-method is used to derive numerous kink, antikink, dark, and bright soliton solutions.展开更多
In this paper, a novel hyperchaotic system with one nonlinear term and its fractional order system are proposed. Furthermore,synchronization between two fractional-order systems with different fractional-order values ...In this paper, a novel hyperchaotic system with one nonlinear term and its fractional order system are proposed. Furthermore,synchronization between two fractional-order systems with different fractional-order values is achieved. The proposed synchronization scheme is simple and theoretically rigorous.Numerical simulations are in agreement with the theoretical analysis.展开更多
基金supported by the Research Foundation of Education Bureau of Hubei Province,China (Grant No Z200612001)the Natural Science Foundation of Yangtze University (Grant No 20061222)
文摘In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some exact explicit travelling solitary wave solutions for the above equation are obtained. As a result, some minor errors and some known results in the previousl literature are clarified and improved.
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department(09A082)
文摘: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article.
基金supported financially by the National Natural Science Foundation of China(10971019)supported financially by the Scientific Research Fund of Hunan Provincial Educational Department(09C852)
文摘In this article, we consider the controllability of a quasi-linear heat equation involving gradient terms with Dirichlet boundary conditions in a bounded domain of RN.The results are established by using the variational methods, the related duality theory and Kakutani Fixed-point Theorem.
文摘By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.
基金Supported by the Natural Science Foundation of China(Grant No.11371175)Innovation Team Project in Colleges and Universities of Guangdong Province(Grant No.2020WCXTD008)+1 种基金Science Foundation of Huashang College Guangdong University of Finance&Economics(Grant No.2020HSDS01)Science Research Team Project in Guangzhou Huashang College(Grant No.2021HSKT01).
文摘In this paper,we study the blow-up of solutions to a semi-linear wave equation with a nonlinear memory term of derivative type.By using methods of an iteration argument and di erential inequalities,we obtain the blow-up result for the semi-linear wave equation when the exponent of p is under certain conditions.Meanwhile,we derive an upper bound of the lifespan of solutions to the Cauchy problem for the semi-linear wave equation.
基金Supported by the Key NSF of China(40333031)Supported by the NSF of Education Department of Hunan Province(04C646)
文摘In this paper, we obtain some nonoscillatory theories of the functional differential equation (r(t)ψ(x(t))x (t)) + f(t, x(t), x(σ(t))) = 0, t ≥ t 0 , where r ∈ C 1 ([t 0 , ∞); (0, ∞)), ψ∈ C 1 (R, R) and f ∈ C([t 0 , ∞) × R × R, R).
文摘In this paper, we introduce and propose exact and explicit analytical solutions to a novel model of the nonlinear Schr¨odinger(NLS) equation. This model is derived as the equation governing the dynamics of modulated cutoff waves in a discrete nonlinear electrical lattice. It is characterized by the addition of two terms that involve time derivatives to the classical equation. Through those terms, our model is also tantamount to a generalized NLS equation with saturable;which suggests that the discrete electrical transmission lines can potentially be used to experimentally investigate wave propagation in media that are modeled by such type of nonlinearity. We demonstrate that the new terms can enlarge considerably the forms of the solutions as compared to similar NLS-type equations. Sine–Gordon expansion-method is used to derive numerous kink, antikink, dark, and bright soliton solutions.
基金Project supported by the Key Lab Open Foundation for Network Control Technology and Intelligent Instruments of Collegesin Chongqing Province,China (Grant No 20070F01)Education Committee of Chongqing Province,China (Grant NoKJ070502)
文摘In this paper, a novel hyperchaotic system with one nonlinear term and its fractional order system are proposed. Furthermore,synchronization between two fractional-order systems with different fractional-order values is achieved. The proposed synchronization scheme is simple and theoretically rigorous.Numerical simulations are in agreement with the theoretical analysis.