Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degrad...Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.展开更多
A new Gaussian approximation nonlinear filter called generalized cubature quadrature Kalman filter (GCQKF) is introduced for nonlinear dynamic systems. Based on standard GCQKF, two extensions are developed, namely squ...A new Gaussian approximation nonlinear filter called generalized cubature quadrature Kalman filter (GCQKF) is introduced for nonlinear dynamic systems. Based on standard GCQKF, two extensions are developed, namely square root generalized cubature quadrature Kalman filter (SR-GCQKF) and iterated generalized cubature quadrature Kalman filter (I-GCQKF). In SR-GCQKF, the QR decomposition is exploited to alter the Cholesky decomposition and both predicted and filtered error covariances have been propagated in square root format to make sure the numerical stability. In I-GCQKF, the measurement update step is executed iteratively to make full use of the latest measurement and a new terminal criterion is adopted to guarantee the increase of likelihood. Detailed numerical experiments demonstrate the superior performance on both tracking stability and estimation accuracy of I-GCQKF and SR-GCQKF compared with GCQKF.展开更多
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
基金Projects(51475462,61374138,61370031)supported by the National Natural Science Foundation of China
文摘Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.
基金supported by the National Natural Science Foundation of China(6147322711472222)+2 种基金the Aerospace Technology Support Fund of China(2014-HT-XGD)the Natural Science Foundation of Shaanxi Province(2015JM6304)the Aeronautical Science Foundation of China(20151353018)
文摘A new Gaussian approximation nonlinear filter called generalized cubature quadrature Kalman filter (GCQKF) is introduced for nonlinear dynamic systems. Based on standard GCQKF, two extensions are developed, namely square root generalized cubature quadrature Kalman filter (SR-GCQKF) and iterated generalized cubature quadrature Kalman filter (I-GCQKF). In SR-GCQKF, the QR decomposition is exploited to alter the Cholesky decomposition and both predicted and filtered error covariances have been propagated in square root format to make sure the numerical stability. In I-GCQKF, the measurement update step is executed iteratively to make full use of the latest measurement and a new terminal criterion is adopted to guarantee the increase of likelihood. Detailed numerical experiments demonstrate the superior performance on both tracking stability and estimation accuracy of I-GCQKF and SR-GCQKF compared with GCQKF.