水泥生产立磨出风口温度是判断立磨运行状态是否安全稳定的关键参数,对该参数提前预测可以减少立磨振动,提高运行稳定性,增加产量,降低能耗及相关碳排放。水泥立磨系统具有多参数、大时滞和非线性等复杂特性。针对上述问题,提出了基于...水泥生产立磨出风口温度是判断立磨运行状态是否安全稳定的关键参数,对该参数提前预测可以减少立磨振动,提高运行稳定性,增加产量,降低能耗及相关碳排放。水泥立磨系统具有多参数、大时滞和非线性等复杂特性。针对上述问题,提出了基于互相关延时分析优化的非线性自回归外部输入(Nonlinear AutoRegressive with eXogenous inputs,NARX)神经网络,并用于立磨出风口温度预测。首先,采用皮尔逊相关性分析从多个参数中确定影响立磨出风口温度的关键参数。同时,利用互相关延时分析进行时滞分析,解决大时滞问题。其次,通过优化的NARX神经网络,实现非线性工况下温度的精准预测。案例验证结果表明,所提出模型的拟合度达到了0.99967,均方误差为0.56483,预测精度达到了98.4%以上。预测模型结果可指导立磨操作人员及时控制立磨振动,提高水泥产量并降低能耗和碳排放。展开更多
提出了基于径向基函数(Radial Basis Function,RBF)网络和有源自回归(Auto-Regressive with Extra Inputs,ARX)模型的液压系统的故障诊断方法。作为一种性能优越的网络分类器,RBF网络比传统的反向传播(Back Propagation,BP)网络表现出...提出了基于径向基函数(Radial Basis Function,RBF)网络和有源自回归(Auto-Regressive with Extra Inputs,ARX)模型的液压系统的故障诊断方法。作为一种性能优越的网络分类器,RBF网络比传统的反向传播(Back Propagation,BP)网络表现出更好的分类效果,非常适合于故障特征识别。故障诊断方法首先针对目标故障状态建立ARX模型,提取ARX模型的自回归系数作为故障特征向量。然后将故障特征向量作为RBF网络训练样本,建立RBF网络故障分类器,进一步根据RBF网络的输出结果来判断故障的类型。通过建立挖掘机铲斗部分液压系统仿真模型,验证了于基于RBF网络和ARX模型的故障诊断方法的有效性。展开更多
提出了一种针对挖掘机液压系统的非线性有源自回归(nonlinear auto-regressive with extrainputs,NARX)网络模型的故障检测方法。NARX网络模型是一种将有源自回归(auto-regressivewith extra inputs,ARX)模型与神经网络相结合的系统建...提出了一种针对挖掘机液压系统的非线性有源自回归(nonlinear auto-regressive with extrainputs,NARX)网络模型的故障检测方法。NARX网络模型是一种将有源自回归(auto-regressivewith extra inputs,ARX)模型与神经网络相结合的系统建模方法,具有很强的非线性辨识能力。该方法首先选取合理的网络模型结构,并根据AIC准则确定最佳模型阶数;使用正常状态样本对NARX网络进行训练,建立系统的辨识模型;然后运用序贯概率比检验(sequential probability ratiotest,SPRT)对NARX辨识模型的残差进行假设检验,检测系统的故障状态。实验分析表明,基于NARX网络模型的故障检测方法能够有效地应用于挖掘机液压系统。展开更多
为了能够更加准确地实现地铁客流预测,提出了一种基于经验模态分解算法(empirical mode decomposition,EMD)优化非线性自回归(nonlinear auto regressive,NAR)动态神经网络的地铁客流量短时预测模型.分析地铁客流量数据后发现日客流量...为了能够更加准确地实现地铁客流预测,提出了一种基于经验模态分解算法(empirical mode decomposition,EMD)优化非线性自回归(nonlinear auto regressive,NAR)动态神经网络的地铁客流量短时预测模型.分析地铁客流量数据后发现日客流量具有一定的变化规律,为此使用了基于时间序列的NAR动态神经网络,该网络具有优秀的非线性动态拟合能力和反馈记忆的功能.结合EMD经验模态分解算法优化NAR动态神经网络预测模型,以此来减少预测误差,提高预测精度.结果显示,EMD-NAR神经网络组合预测模型适用于地铁客流的短时预测,预测精度可达93%,具有较好的应用价值.展开更多
文摘水泥生产立磨出风口温度是判断立磨运行状态是否安全稳定的关键参数,对该参数提前预测可以减少立磨振动,提高运行稳定性,增加产量,降低能耗及相关碳排放。水泥立磨系统具有多参数、大时滞和非线性等复杂特性。针对上述问题,提出了基于互相关延时分析优化的非线性自回归外部输入(Nonlinear AutoRegressive with eXogenous inputs,NARX)神经网络,并用于立磨出风口温度预测。首先,采用皮尔逊相关性分析从多个参数中确定影响立磨出风口温度的关键参数。同时,利用互相关延时分析进行时滞分析,解决大时滞问题。其次,通过优化的NARX神经网络,实现非线性工况下温度的精准预测。案例验证结果表明,所提出模型的拟合度达到了0.99967,均方误差为0.56483,预测精度达到了98.4%以上。预测模型结果可指导立磨操作人员及时控制立磨振动,提高水泥产量并降低能耗和碳排放。
文摘提出了基于径向基函数(Radial Basis Function,RBF)网络和有源自回归(Auto-Regressive with Extra Inputs,ARX)模型的液压系统的故障诊断方法。作为一种性能优越的网络分类器,RBF网络比传统的反向传播(Back Propagation,BP)网络表现出更好的分类效果,非常适合于故障特征识别。故障诊断方法首先针对目标故障状态建立ARX模型,提取ARX模型的自回归系数作为故障特征向量。然后将故障特征向量作为RBF网络训练样本,建立RBF网络故障分类器,进一步根据RBF网络的输出结果来判断故障的类型。通过建立挖掘机铲斗部分液压系统仿真模型,验证了于基于RBF网络和ARX模型的故障诊断方法的有效性。
文摘提出了一种针对挖掘机液压系统的非线性有源自回归(nonlinear auto-regressive with extrainputs,NARX)网络模型的故障检测方法。NARX网络模型是一种将有源自回归(auto-regressivewith extra inputs,ARX)模型与神经网络相结合的系统建模方法,具有很强的非线性辨识能力。该方法首先选取合理的网络模型结构,并根据AIC准则确定最佳模型阶数;使用正常状态样本对NARX网络进行训练,建立系统的辨识模型;然后运用序贯概率比检验(sequential probability ratiotest,SPRT)对NARX辨识模型的残差进行假设检验,检测系统的故障状态。实验分析表明,基于NARX网络模型的故障检测方法能够有效地应用于挖掘机液压系统。
文摘为了能够更加准确地实现地铁客流预测,提出了一种基于经验模态分解算法(empirical mode decomposition,EMD)优化非线性自回归(nonlinear auto regressive,NAR)动态神经网络的地铁客流量短时预测模型.分析地铁客流量数据后发现日客流量具有一定的变化规律,为此使用了基于时间序列的NAR动态神经网络,该网络具有优秀的非线性动态拟合能力和反馈记忆的功能.结合EMD经验模态分解算法优化NAR动态神经网络预测模型,以此来减少预测误差,提高预测精度.结果显示,EMD-NAR神经网络组合预测模型适用于地铁客流的短时预测,预测精度可达93%,具有较好的应用价值.
文摘极限学习机(Extreme learning machine,ELM)是一种单隐层前馈神经网络(SLFNs),它随机选择网络的隐含层节点及其参数,训练时仅需调节输出层权值,因此ELM以极快的学习速度获得良好的推广性。考虑到ELM的特征映射函数未知时,可以将核矩阵引入到ELM中。针对模型未知的强非线性连续搅拌反应釜(Continuous Stirred Tank Reactor,CSTR),提出一种基于核极限学习机(Extreme Learning Machine with Kernels,KELM)的NARX模型辨识方法。以仿真的CSTR过程实例进行辨识实验,建立基于NARX-KELM的辨识模型。实验结果表明,在相同条件下,与带动量因子的BP神经网络、模糊神经网络(FNN)、GAP-RBF、MGAP-RBF神经网络、回声状态网络(ESN)、ELM等方法相比,KELM能够有效地改进辨识精度,而且性能更好,这表明了所提方法的有效性和应用潜力。