The high-intensity heavy-ion accelerator facility(HIAF)is a scientific research facility complex composed of multiple cas-cade accelerators of different types,which pose a scheduling problem for devices distributed ov...The high-intensity heavy-ion accelerator facility(HIAF)is a scientific research facility complex composed of multiple cas-cade accelerators of different types,which pose a scheduling problem for devices distributed over a certain range of 2 km,involving over a hundred devices.The white rabbit,a technology-enhancing Gigabit Ethernet,has shown the capability of scheduling distributed timing devices but still faces the challenge of obtaining real-time synchronization calibration param-eters with high precision.This study presents a calibration system based on a time-to-digital converter implemented on an ARM-based System-on-Chip(SoC).The system consists of four multi-sample delay lines,a bubble-proof encoder,an edge controller for managing data from different channels,and a highly effective calibration module that benefits from the SoC architecture.The performance was evaluated with an average RMS precision of 5.51 ps by measuring the time intervals from 0 to 24,000 ps with 120,000 data for every test.The design presented in this study refines the calibration precision of the HIAF timing system.This eliminates the errors caused by manual calibration without efficiency loss and provides data support for fault diagnosis.It can also be easily tailored or ported to other devices for specific applications and provides more space for developing timing systems for particle accelerators,such as white rabbits on HIAF.展开更多
A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength c...A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength calibration for the VUV spectroscopy is achieved utilizing a zinc lamp.The grating angle and charge-coupled device(CCD)position are carefully calibrated for different wavelength positions.The wavelength calibration of the VUV spectroscopy is crucial for improving the accuracy of impurity spectral data,and is required to identify more impurity spectral lines for impurity transport research.Impurity spectra of EAST plasmas have also been obtained in the wavelength range of 50–300 nm with relatively high spectral resolution.It is found that the impurity emissions in the edge region are still dominated by low-Z impurities,such as carbon,oxygen,and nitrogen,albeit with the application of fulltungsten divertors on the EAST tokamak.展开更多
According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements r...According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.展开更多
A calibration scheme under spherical coordinates is described for a magnetic tracker used in VR (virtual reality) system. A look up table containing data of tracked values for certain positions in the working space, ...A calibration scheme under spherical coordinates is described for a magnetic tracker used in VR (virtual reality) system. A look up table containing data of tracked values for certain positions in the working space, spe cified in spherical coordinates, is generated first, which is then used to calibrate the tracking results by a two dimensional interpolation. The scheme can effectively correct the static errors in the magnetic tracking system. The employment of spherical coordinates significantly reduces the calculation complexity in calibration.展开更多
This study reports the performances of efficiency calibrations for high-purity-germanium gamma-ray spectrometry using the source-, Laboratory Sourceless Object Calibration Software(LabSOCS)-and ANGLE-based methods in ...This study reports the performances of efficiency calibrations for high-purity-germanium gamma-ray spectrometry using the source-, Laboratory Sourceless Object Calibration Software(LabSOCS)-and ANGLE-based methods in an inter-comparison exercise. Although the results of LabSOCS and ANGLE for ^(241)Am emitting lowenergy gamma rays were not very satisfactory, all of the three efficiency calibration methods passed acceptance criteria. The results confirmed the reliability of the calculation codes ANGLE and LabSOCS as alternative efficiency calibration methods in high-purity-germanium gamma spectrometry. This study is likely to promote the further application of the ANGLE and LabSOCS calculation codes in radioactivity measurements.展开更多
With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study...With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.展开更多
Because surface-based monitoring of hydraulic fracturing is not restricted by borehole geometry or the difficulties in maintaining subsurface equipment, it is becoming an increasingly common part of microseismic monit...Because surface-based monitoring of hydraulic fracturing is not restricted by borehole geometry or the difficulties in maintaining subsurface equipment, it is becoming an increasingly common part of microseismic monitoring. The ability to determine an accurate velocity model for the monitored area directly affects the accuracy of microseismic event locations. However, velocity model calibration for location with surface instruments is difficult for several reasons: well log measurements are often inaccurate or incomplete, yielding intractable models; ori- gin times of perforation shots are not always accurate; and the non-uniqueness of velocity models obtained by inver- sion becomes especially problematic when only perforation shots are used. In this paper, we propose a new approach to overcome these limitations. We establish an initial velocity model from well logging data, and then use the root mean square (RMS) error of double-difference arrival times as a proxy measure for the misfit between the well log velocity model and the true velocity structure of the medium. Double-difference RMS errors are reduced by using a very fast simulated annealing for model perturbance, and a sample set of double-difference RMS errors is then selec- ted to determine an empirical threshold. This threshold value is set near the minimum RMS of the selected samples, and an appropriate number of travel times within the threshold range are chosen. The corresponding velocity models are then used to relocate the perforation-shot. We use the velocity model with the smallest relative location errors as the basis for microseismic location. Numerical analysis with exact input velocity models shows that although large differences exist between the calculated and true velocity models, perforation shots can still be located to their actual positions with the proposed technique; the location inaccuracy of the perforation is 〈2 m. Further tests on field data demonstrate the validity of this technique.展开更多
The time-domain calibration coefficient of a D-Dot sensor should be identical across various transverse electromagnetic (TEM) cells to comply with the IEEE Std 1309. However, in our previous calibration experiments, p...The time-domain calibration coefficient of a D-Dot sensor should be identical across various transverse electromagnetic (TEM) cells to comply with the IEEE Std 1309. However, in our previous calibration experiments, poor consistency was observed. The size of D-Dot sensors relative to TEM cells is considered the main reason for this poor consistency. Therefore, this study aims at determining the calibration coefficient of a D-Dot sensor. We calculate the theoretical coefficient as a reference. Practical calibration experiments involve the processing of TEM cells with three different sizes. To observe the response more clearly, corresponding models are constructed and numerical simulations are performed. The numerical simulations and experimental calibration are in good agreement. To determine the calibration accuracy, we quantify the accuracy using the relative error of the calibration coefficient. By comparing the coefficients obtained, it can be concluded that the perturbation error is about 15% when the relative size is over 1/3. Further, the relative size should be less than 1/5 to obtain a relative error below 10%.展开更多
Laser-induced breakdown spectroscopy(LIBS) is a qualitative and quantitative analytical technique with great potential in the cement industrial analysis. Calibration curve(CC) and support vector regression(SVR) method...Laser-induced breakdown spectroscopy(LIBS) is a qualitative and quantitative analytical technique with great potential in the cement industrial analysis. Calibration curve(CC) and support vector regression(SVR) methods coupled with LIBS technology were applied for the quantification of three types of cement raw meal samples to compare their analytical concentration range and the ability to reduce matrix effects, respectively. To reduce the effects of fluctuations of the pulse-to-pulse, the unstable ablation and improve the reproducibility, all of the analysis line intensities were normalized on a per-detector basis. The prediction results of the elements of interest in the three types of samples, Ca, Si, Fe, Al, Mg, Na, K and Ti, were compared with the results of the wet chemical analysis. The average relative error(ARE),relative standard deviation(RSD) and root mean squared error of prediction(RMSEP) were employed to investigate and evaluate the prediction accuracy and stability of the two prediction methods. The maximum average ARE of the CC and SVR methods is 34.62% instead of 6.13%,RSD is 40.89% instead of 7.60% and RMSEP is 1.34% instead of 0.43%. The results show that SVR method can accurately analyze samples within a wider concentration range and reduce the matrix effects, and LIBS coupled with it for a rapid, stable and accurate quantification of different types of cement raw meal samples is promising.展开更多
An accurate energy calibration of a 5"× 2" BC501A liquid scintillator-based neutron detector by means of photon sources and the unfolding of pulse height spectra are described. The photon responses were measure...An accurate energy calibration of a 5"× 2" BC501A liquid scintillator-based neutron detector by means of photon sources and the unfolding of pulse height spectra are described. The photon responses were measured with 22Na, 137Cs and 54Mn photon sources and simulated using the GRESP code, which was developed at the Physiknlisch Technische Bundesanstalt in Germany. Pulse height spectra produced by three different photon sources were employed to investigate the effects of the unfolding techniques. It was found that the four unfolding codes of the HEPRO and UMG3.3 packages, including GRAVEL, UNFANA, MIEKE and MAXED, performed well with the test spectra and produced generally consistent results. They could therefore be used to obtain neutron energy spectra in toknmak experiments.展开更多
The spectral analysis method is suitable for the process control and the process analysis such as the fast evaluation of crude oils. In this study, model transfer between the same type of spectrometer and different ty...The spectral analysis method is suitable for the process control and the process analysis such as the fast evaluation of crude oils. In this study, model transfer between the same type of spectrometer and different type of spectrometers was discussed respectively, and the results have shown that the transfer of calibration model can satisfy the demand of rapid analysis.展开更多
We report in this paper the alignment calibration of the STAR pixel detector(PXL) prototype for the RHIC2013 run and performance study of the full PXL detector installed and commissioned in the RHIC 2014 run. PXL dete...We report in this paper the alignment calibration of the STAR pixel detector(PXL) prototype for the RHIC2013 run and performance study of the full PXL detector installed and commissioned in the RHIC 2014 run. PXL detector is the innermost two silicon layers of the STAR heavy flavor tracker aiming at high-precision reconstruction of secondary decay vertex of heavy flavor particles. To achieve the physics goals, the calibration work was done on the detector with high precision. A histogram-based method was successfully applied for the alignment calibration, and the detector efficiency after alignment was studied using both p t p collision data and cosmic ray data.展开更多
A thorough detector response calibration using radioactive sources is necessary for the Jiangmen Underground Neutrino Observatory. Herein, we discuss the design of a source positioning system based on ultrasonic techn...A thorough detector response calibration using radioactive sources is necessary for the Jiangmen Underground Neutrino Observatory. Herein, we discuss the design of a source positioning system based on ultrasonic technology, aiming for a 3-cm precision over the entire35-m diameter detector sphere. A prototype system is constructed and demonstrated for the experiment.展开更多
Calibrations were performed for three types of neutron ambient dose equivalent rate meters, i.e., Aloka TPS-451C (Hitachi), KSAR1U.06 (Baltic Scientific Instruments), and Model 12-4 (Ludlum), using a standard field of...Calibrations were performed for three types of neutron ambient dose equivalent rate meters, i.e., Aloka TPS-451C (Hitachi), KSAR1U.06 (Baltic Scientific Instruments), and Model 12-4 (Ludlum), using a standard field of a 241Am–Be source. The measured total neutron ambient dose equivalent rates, H*(10)' tot, were analyzed to obtain the direct neutron ambient dose equivalent rates, H*(10)' dir, using the ISO 8529-2-recommended generalized- fit method, semiempirical fit method, and reducedfitting method (RFM) fit methods. The calibration factor (CF), defined as the ratio between the conventional true value of the neutron ambient dose equivalent rates in a free field, H*(10)' FF, and H*(10)' dir, was evaluated as one of the important characteristics of the neutron meters in the present work. The fitting results show that the H*(10)' dir values of the meters are in good agreement within the theoretical data within 4%. The averaged CFs of the three neutron meters were evaluated as 0:99 ± 0:01, 1:00 ± 0.03;and 0:99 ± 0:08, respectively. The largest standard uncertainty of these values was determined to be approximately 18.47%(k =1). The standard uncertainty of the CFs obtained using the RFM method was less than 4.23%(k=1), which is the smallest uncertainty among the three methods.展开更多
A computer-based simulation and test system is developed. This system has the following functions: producing the initial control MAP with good accuracy, calibrating the electronic control unit (ECU) on-line, (identify...A computer-based simulation and test system is developed. This system has the following functions: producing the initial control MAP with good accuracy, calibrating the electronic control unit (ECU) on-line, (identifying) the dynamic transfer functions for air/fuel ratio, idle speed and ignition timing control. So the experiment work is reduced and the calibration is accelerated. In order to increase the simulation accuracy of the initial control MAP, the mathematical models are not only based on theoretical equations, but also on the control data of reference working points, which is obtained by the on-line calibration of special engines. The application of this system on a mini-car shows that the simulated control MAP has good accuracy, the interface of the system is friendly, the integrated simulation and test system is a powerful aid for EFI engine calibration and the development speed is accelerated.展开更多
In order to solve the problems of the fine division of sedimentary sequence cycles and their change in two-dimensional space as well as lateral extension contrast, we developed a method of wavelet depth-frequency anal...In order to solve the problems of the fine division of sedimentary sequence cycles and their change in two-dimensional space as well as lateral extension contrast, we developed a method of wavelet depth-frequency analysis. The single signal and composite signal of different Milankovitch cycles are obtained by numerical simulation. The simulated composite signal can be separated into single signals of a single frequency cycle. We also develop a well-seismic calibration insertion technology which helps to realize the calibration from the spectrum characteristics of a single well to the seismic profile. And then we determine the change and distribution characteristics of spectrum cycles in the two-dimensional space. It points out the direction in determining the variations of the regional sedimentary sequence cycles, underground strata structure and the contact relationship.展开更多
The scale factor of a superconducting gravimeter(SG) is usually calibrated by using simultaneous and co-located gravity measurements with the FG5-type absolute gravimeter(AG). In this paper, another new kind of absolu...The scale factor of a superconducting gravimeter(SG) is usually calibrated by using simultaneous and co-located gravity measurements with the FG5-type absolute gravimeter(AG). In this paper, another new kind of absolute gravimetercold atom gravimeter(CAG) is first reported to calibrate the SG. Five-day side-by-side gravity measurements have been carried out by using our CAG(NIM-AGRb-1) to calibrate the SG(iGrav-012) located at Changping Campus of the National Institute of Metrology(NIM) of China. A weighted least-squares method is applied to determine the scale factor and the result is given as(-928.01 ± 0.73) nm·s^(-2)·V^(-1) with a precision of 0.79‰. We have demonstrated that a calibration precision of 1‰ level can be achieved after 3 days of parallel observations at spring tide. The obtained calibration results are then compared with the previous calibration by FG5 X-249, which shows that the calibration precision obtained by using NIM-AGRb-1 was slightly higher than FG5 X-249 with the same time interval. The factors affecting the calibration precision are analyzed in the calibrations by means of different AGs. Finally, several calibration experiments for SG iGrav-012 are discussed. The final scale factor is estimated as(-927.58 ± 0.36) nm·s^(-2)·V^(-1) with an accuracy of 0.39‰. Our main results demonstrate that the CAGs can be used for high-precision calibrations of SGs.展开更多
To guarantee control system's performance and shorten the development cycle during the development process of hydraulic automatic transmission, a calibration system on CAN for high-pow- er AT ECU is designed based on...To guarantee control system's performance and shorten the development cycle during the development process of hydraulic automatic transmission, a calibration system on CAN for high-pow- er AT ECU is designed based on XCP. In this system, it is possible that the master dynamically searching the slaves available on bus and data synchronization between master and slave is also achieved. Real-time measurement and on-line calibration can be executed during the running process of transmission control unit, so the calibration result is displayed in time. Calibration by true value and physical value are both available. Experimental results showed that this system operated stably and reliably and had strong timeout handling ability.展开更多
This paper describes a method for energy calibration of laterally segmented electromagnetic calorimeters based on the detection of two-photon decays of π~0 mesons.The calibration procedure performs a X^2 function min...This paper describes a method for energy calibration of laterally segmented electromagnetic calorimeters based on the detection of two-photon decays of π~0 mesons.The calibration procedure performs a X^2 function minimization between the measured π~0 energy in the calorimeter and its expected energy deduced from the π~0 momentum direction. The performance of this technique is demonstrated with a Monte Carlo simulation of an experimental case where biased calibration coefficients are employed. The real calibration coefficients are restored with less than 1% relative accuracy when a sufficient number of π~0 is detected. This technique is applied to monitor daily the calibration coefficients of the calorimeter used in the Jefferson Lab Hall A DVCS experiments.展开更多
Charged particle diagnosis is an important aspect of laser–plasma experiments conducted at super-intense laser facilities. In recent years, Columbia Resin #39 (CR- 39) detectors have been widely employed for detectin...Charged particle diagnosis is an important aspect of laser–plasma experiments conducted at super-intense laser facilities. In recent years, Columbia Resin #39 (CR- 39) detectors have been widely employed for detecting charged particles in laser–plasma experiments. This is because the CR-39 polymer does not respond to electromagnetic pulses or X-rays. This study presents a method for calibrating the relationship between particle energy and track diameter in a CR-39 detector (TasTrak■) using 3-8 MeV protons, 6-30 MeV carbon ions, and 1–5 MeV alpha particles. The particle tracks were compared under the manufacturer’s recommended etching conditions of 6.25 mol/l NaOH at 98℃ and under the widely adopted experimental conditions of 6.25 mol/l NaOH at 70℃. The results show that if the NaOH solution concentration is 6.25 mol/l, then the temperature of 70℃is more suitable for etching proton tracks than 98℃ and employing a temperature of 98 ℃ to etch alpha-particle and carbon-ion tracks can significantly reduce the etching time. Moreover, this result implies that C3+ ion or alpha-particle tracks can be distinguished from proton tracks with energy above 3 MeV by controlling the etching time. This calibration method for the CR-39 detector can be applied to the diagnosis of reaction products in laser–plasma experiments.展开更多
基金supported by high-intensity heavy-ion accelerator facility(HIAF)approved by the National Development and Reform Commission of China(2017-000052-73-01-002107)。
文摘The high-intensity heavy-ion accelerator facility(HIAF)is a scientific research facility complex composed of multiple cas-cade accelerators of different types,which pose a scheduling problem for devices distributed over a certain range of 2 km,involving over a hundred devices.The white rabbit,a technology-enhancing Gigabit Ethernet,has shown the capability of scheduling distributed timing devices but still faces the challenge of obtaining real-time synchronization calibration param-eters with high precision.This study presents a calibration system based on a time-to-digital converter implemented on an ARM-based System-on-Chip(SoC).The system consists of four multi-sample delay lines,a bubble-proof encoder,an edge controller for managing data from different channels,and a highly effective calibration module that benefits from the SoC architecture.The performance was evaluated with an average RMS precision of 5.51 ps by measuring the time intervals from 0 to 24,000 ps with 120,000 data for every test.The design presented in this study refines the calibration precision of the HIAF timing system.This eliminates the errors caused by manual calibration without efficiency loss and provides data support for fault diagnosis.It can also be easily tailored or ported to other devices for specific applications and provides more space for developing timing systems for particle accelerators,such as white rabbits on HIAF.
基金partially supported by National Natural Science Foundation of China(Nos.U23A2077,12175278,12205072)the National Magnetic Confinement Fusion Science Program of China(Nos.2019YFE0304002,2018YFE0303103)+2 种基金the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences(2021)the University Synergy Innovation Program of Anhui Province(No.GXXT2021-029)。
文摘A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength calibration for the VUV spectroscopy is achieved utilizing a zinc lamp.The grating angle and charge-coupled device(CCD)position are carefully calibrated for different wavelength positions.The wavelength calibration of the VUV spectroscopy is crucial for improving the accuracy of impurity spectral data,and is required to identify more impurity spectral lines for impurity transport research.Impurity spectra of EAST plasmas have also been obtained in the wavelength range of 50–300 nm with relatively high spectral resolution.It is found that the impurity emissions in the edge region are still dominated by low-Z impurities,such as carbon,oxygen,and nitrogen,albeit with the application of fulltungsten divertors on the EAST tokamak.
文摘According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.
文摘A calibration scheme under spherical coordinates is described for a magnetic tracker used in VR (virtual reality) system. A look up table containing data of tracked values for certain positions in the working space, spe cified in spherical coordinates, is generated first, which is then used to calibrate the tracking results by a two dimensional interpolation. The scheme can effectively correct the static errors in the magnetic tracking system. The employment of spherical coordinates significantly reduces the calculation complexity in calibration.
基金supported by the Support Program of the Ministry of Science and Technology(No.2014FY211000)the National Key Technology Research and Development Program(No.2013BAK03B05)
文摘This study reports the performances of efficiency calibrations for high-purity-germanium gamma-ray spectrometry using the source-, Laboratory Sourceless Object Calibration Software(LabSOCS)-and ANGLE-based methods in an inter-comparison exercise. Although the results of LabSOCS and ANGLE for ^(241)Am emitting lowenergy gamma rays were not very satisfactory, all of the three efficiency calibration methods passed acceptance criteria. The results confirmed the reliability of the calculation codes ANGLE and LabSOCS as alternative efficiency calibration methods in high-purity-germanium gamma spectrometry. This study is likely to promote the further application of the ANGLE and LabSOCS calculation codes in radioactivity measurements.
基金supported by the National Natural Science Foundation of China(Nos.41374130 and 41604154)
文摘With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.
基金supported by the National Natural Science Foundation of China(No.41074074)
文摘Because surface-based monitoring of hydraulic fracturing is not restricted by borehole geometry or the difficulties in maintaining subsurface equipment, it is becoming an increasingly common part of microseismic monitoring. The ability to determine an accurate velocity model for the monitored area directly affects the accuracy of microseismic event locations. However, velocity model calibration for location with surface instruments is difficult for several reasons: well log measurements are often inaccurate or incomplete, yielding intractable models; ori- gin times of perforation shots are not always accurate; and the non-uniqueness of velocity models obtained by inver- sion becomes especially problematic when only perforation shots are used. In this paper, we propose a new approach to overcome these limitations. We establish an initial velocity model from well logging data, and then use the root mean square (RMS) error of double-difference arrival times as a proxy measure for the misfit between the well log velocity model and the true velocity structure of the medium. Double-difference RMS errors are reduced by using a very fast simulated annealing for model perturbance, and a sample set of double-difference RMS errors is then selec- ted to determine an empirical threshold. This threshold value is set near the minimum RMS of the selected samples, and an appropriate number of travel times within the threshold range are chosen. The corresponding velocity models are then used to relocate the perforation-shot. We use the velocity model with the smallest relative location errors as the basis for microseismic location. Numerical analysis with exact input velocity models shows that although large differences exist between the calculated and true velocity models, perforation shots can still be located to their actual positions with the proposed technique; the location inaccuracy of the perforation is 〈2 m. Further tests on field data demonstrate the validity of this technique.
文摘The time-domain calibration coefficient of a D-Dot sensor should be identical across various transverse electromagnetic (TEM) cells to comply with the IEEE Std 1309. However, in our previous calibration experiments, poor consistency was observed. The size of D-Dot sensors relative to TEM cells is considered the main reason for this poor consistency. Therefore, this study aims at determining the calibration coefficient of a D-Dot sensor. We calculate the theoretical coefficient as a reference. Practical calibration experiments involve the processing of TEM cells with three different sizes. To observe the response more clearly, corresponding models are constructed and numerical simulations are performed. The numerical simulations and experimental calibration are in good agreement. To determine the calibration accuracy, we quantify the accuracy using the relative error of the calibration coefficient. By comparing the coefficients obtained, it can be concluded that the perturbation error is about 15% when the relative size is over 1/3. Further, the relative size should be less than 1/5 to obtain a relative error below 10%.
基金supported by National Natural Science Foundation of China (Grant Nos. 61505223, 41775128)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. Y03RC21124)+1 种基金the External Cooperation Program of Chinese Academy of Sciences (Grant No. GJHZ1726)the project of China State Key Lab. of Power System (Grant Nos. SKLD18KM11, SKLD18M12)
文摘Laser-induced breakdown spectroscopy(LIBS) is a qualitative and quantitative analytical technique with great potential in the cement industrial analysis. Calibration curve(CC) and support vector regression(SVR) methods coupled with LIBS technology were applied for the quantification of three types of cement raw meal samples to compare their analytical concentration range and the ability to reduce matrix effects, respectively. To reduce the effects of fluctuations of the pulse-to-pulse, the unstable ablation and improve the reproducibility, all of the analysis line intensities were normalized on a per-detector basis. The prediction results of the elements of interest in the three types of samples, Ca, Si, Fe, Al, Mg, Na, K and Ti, were compared with the results of the wet chemical analysis. The average relative error(ARE),relative standard deviation(RSD) and root mean squared error of prediction(RMSEP) were employed to investigate and evaluate the prediction accuracy and stability of the two prediction methods. The maximum average ARE of the CC and SVR methods is 34.62% instead of 6.13%,RSD is 40.89% instead of 7.60% and RMSEP is 1.34% instead of 0.43%. The results show that SVR method can accurately analyze samples within a wider concentration range and reduce the matrix effects, and LIBS coupled with it for a rapid, stable and accurate quantification of different types of cement raw meal samples is promising.
基金supported by the State Key Development Program for Basic Research of China (Nos. 2008CB717803, 2009GB107001,2007CB209903)the Research Fund for the Doctoral Program of Higher Education of China (No. 200610011023)National Natural Science Foundation of China (No. 10875002)
文摘An accurate energy calibration of a 5"× 2" BC501A liquid scintillator-based neutron detector by means of photon sources and the unfolding of pulse height spectra are described. The photon responses were measured with 22Na, 137Cs and 54Mn photon sources and simulated using the GRESP code, which was developed at the Physiknlisch Technische Bundesanstalt in Germany. Pulse height spectra produced by three different photon sources were employed to investigate the effects of the unfolding techniques. It was found that the four unfolding codes of the HEPRO and UMG3.3 packages, including GRAVEL, UNFANA, MIEKE and MAXED, performed well with the test spectra and produced generally consistent results. They could therefore be used to obtain neutron energy spectra in toknmak experiments.
文摘The spectral analysis method is suitable for the process control and the process analysis such as the fast evaluation of crude oils. In this study, model transfer between the same type of spectrometer and different type of spectrometers was discussed respectively, and the results have shown that the transfer of calibration model can satisfy the demand of rapid analysis.
基金supported in part by the National Natural Science Foundation of China(No.11421505)the Major State Basic Research Development Program in China(No.2014CB845400)
文摘We report in this paper the alignment calibration of the STAR pixel detector(PXL) prototype for the RHIC2013 run and performance study of the full PXL detector installed and commissioned in the RHIC 2014 run. PXL detector is the innermost two silicon layers of the STAR heavy flavor tracker aiming at high-precision reconstruction of secondary decay vertex of heavy flavor particles. To achieve the physics goals, the calibration work was done on the detector with high precision. A histogram-based method was successfully applied for the alignment calibration, and the detector efficiency after alignment was studied using both p t p collision data and cosmic ray data.
基金supported by the ‘‘Strategic Priority Research Program’’ of the Chinese Academy of Sciences(No.XDA10010800)the ‘‘Fundamental Research Funds for the Central Universities’’(No.3102017zy010)
文摘A thorough detector response calibration using radioactive sources is necessary for the Jiangmen Underground Neutrino Observatory. Herein, we discuss the design of a source positioning system based on ultrasonic technology, aiming for a 3-cm precision over the entire35-m diameter detector sphere. A prototype system is constructed and demonstrated for the experiment.
基金supported by the Ministry of Science and Technology of Vietnam under Grant 07/HD/DTCB
文摘Calibrations were performed for three types of neutron ambient dose equivalent rate meters, i.e., Aloka TPS-451C (Hitachi), KSAR1U.06 (Baltic Scientific Instruments), and Model 12-4 (Ludlum), using a standard field of a 241Am–Be source. The measured total neutron ambient dose equivalent rates, H*(10)' tot, were analyzed to obtain the direct neutron ambient dose equivalent rates, H*(10)' dir, using the ISO 8529-2-recommended generalized- fit method, semiempirical fit method, and reducedfitting method (RFM) fit methods. The calibration factor (CF), defined as the ratio between the conventional true value of the neutron ambient dose equivalent rates in a free field, H*(10)' FF, and H*(10)' dir, was evaluated as one of the important characteristics of the neutron meters in the present work. The fitting results show that the H*(10)' dir values of the meters are in good agreement within the theoretical data within 4%. The averaged CFs of the three neutron meters were evaluated as 0:99 ± 0:01, 1:00 ± 0.03;and 0:99 ± 0:08, respectively. The largest standard uncertainty of these values was determined to be approximately 18.47%(k =1). The standard uncertainty of the CFs obtained using the RFM method was less than 4.23%(k=1), which is the smallest uncertainty among the three methods.
文摘A computer-based simulation and test system is developed. This system has the following functions: producing the initial control MAP with good accuracy, calibrating the electronic control unit (ECU) on-line, (identifying) the dynamic transfer functions for air/fuel ratio, idle speed and ignition timing control. So the experiment work is reduced and the calibration is accelerated. In order to increase the simulation accuracy of the initial control MAP, the mathematical models are not only based on theoretical equations, but also on the control data of reference working points, which is obtained by the on-line calibration of special engines. The application of this system on a mini-car shows that the simulated control MAP has good accuracy, the interface of the system is friendly, the integrated simulation and test system is a powerful aid for EFI engine calibration and the development speed is accelerated.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2011YYL128)the CNPC Innovation Foundation(GrantNo.2012D-5006-0103)the Ministry of Land and Resources special funds for scientific research on public cause(Grant No.201311107)
文摘In order to solve the problems of the fine division of sedimentary sequence cycles and their change in two-dimensional space as well as lateral extension contrast, we developed a method of wavelet depth-frequency analysis. The single signal and composite signal of different Milankovitch cycles are obtained by numerical simulation. The simulated composite signal can be separated into single signals of a single frequency cycle. We also develop a well-seismic calibration insertion technology which helps to realize the calibration from the spectrum characteristics of a single well to the seismic profile. And then we determine the change and distribution characteristics of spectrum cycles in the two-dimensional space. It points out the direction in determining the variations of the regional sedimentary sequence cycles, underground strata structure and the contact relationship.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFF0200103 and 2016YFF0200200)the Fundamental Research Funds for National Institute of Metrology,China(Grant No.22-AKY1608)
文摘The scale factor of a superconducting gravimeter(SG) is usually calibrated by using simultaneous and co-located gravity measurements with the FG5-type absolute gravimeter(AG). In this paper, another new kind of absolute gravimetercold atom gravimeter(CAG) is first reported to calibrate the SG. Five-day side-by-side gravity measurements have been carried out by using our CAG(NIM-AGRb-1) to calibrate the SG(iGrav-012) located at Changping Campus of the National Institute of Metrology(NIM) of China. A weighted least-squares method is applied to determine the scale factor and the result is given as(-928.01 ± 0.73) nm·s^(-2)·V^(-1) with a precision of 0.79‰. We have demonstrated that a calibration precision of 1‰ level can be achieved after 3 days of parallel observations at spring tide. The obtained calibration results are then compared with the previous calibration by FG5 X-249, which shows that the calibration precision obtained by using NIM-AGRb-1 was slightly higher than FG5 X-249 with the same time interval. The factors affecting the calibration precision are analyzed in the calibrations by means of different AGs. Finally, several calibration experiments for SG iGrav-012 are discussed. The final scale factor is estimated as(-927.58 ± 0.36) nm·s^(-2)·V^(-1) with an accuracy of 0.39‰. Our main results demonstrate that the CAGs can be used for high-precision calibrations of SGs.
基金Supported by the National High Technology Research and Development Program of China("863" Program)(2012AA111713)
文摘To guarantee control system's performance and shorten the development cycle during the development process of hydraulic automatic transmission, a calibration system on CAN for high-pow- er AT ECU is designed based on XCP. In this system, it is possible that the master dynamically searching the slaves available on bus and data synchronization between master and slave is also achieved. Real-time measurement and on-line calibration can be executed during the running process of transmission control unit, so the calibration result is displayed in time. Calibration by true value and physical value are both available. Experimental results showed that this system operated stably and reliably and had strong timeout handling ability.
文摘This paper describes a method for energy calibration of laterally segmented electromagnetic calorimeters based on the detection of two-photon decays of π~0 mesons.The calibration procedure performs a X^2 function minimization between the measured π~0 energy in the calorimeter and its expected energy deduced from the π~0 momentum direction. The performance of this technique is demonstrated with a Monte Carlo simulation of an experimental case where biased calibration coefficients are employed. The real calibration coefficients are restored with less than 1% relative accuracy when a sufficient number of π~0 is detected. This technique is applied to monitor daily the calibration coefficients of the calorimeter used in the Jefferson Lab Hall A DVCS experiments.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB160203)the National Natural Science Foundation of China(Nos.11875311,11421505,and 11475245)
文摘Charged particle diagnosis is an important aspect of laser–plasma experiments conducted at super-intense laser facilities. In recent years, Columbia Resin #39 (CR- 39) detectors have been widely employed for detecting charged particles in laser–plasma experiments. This is because the CR-39 polymer does not respond to electromagnetic pulses or X-rays. This study presents a method for calibrating the relationship between particle energy and track diameter in a CR-39 detector (TasTrak■) using 3-8 MeV protons, 6-30 MeV carbon ions, and 1–5 MeV alpha particles. The particle tracks were compared under the manufacturer’s recommended etching conditions of 6.25 mol/l NaOH at 98℃ and under the widely adopted experimental conditions of 6.25 mol/l NaOH at 70℃. The results show that if the NaOH solution concentration is 6.25 mol/l, then the temperature of 70℃is more suitable for etching proton tracks than 98℃ and employing a temperature of 98 ℃ to etch alpha-particle and carbon-ion tracks can significantly reduce the etching time. Moreover, this result implies that C3+ ion or alpha-particle tracks can be distinguished from proton tracks with energy above 3 MeV by controlling the etching time. This calibration method for the CR-39 detector can be applied to the diagnosis of reaction products in laser–plasma experiments.