For non-stationary complex dynamic systems,a standardized algorithm is developed to compute time correlation functions,addressing the limitations of traditional methods reliant on the stationary assumption.The propose...For non-stationary complex dynamic systems,a standardized algorithm is developed to compute time correlation functions,addressing the limitations of traditional methods reliant on the stationary assumption.The proposed algorithm integrates two-point and multi-point time correlation functions into a unified framework.Further,it is verified by a practical application in complex financial systems,demonstrating its potential in various complex dynamic systems.展开更多
Integrated sensing and communication(ISAC)is regarded as a pivotal technology for 6G communication.In this paper,we employ Kullback-Leibler divergence(KLD)as the unified performance metric for ISAC systems and investi...Integrated sensing and communication(ISAC)is regarded as a pivotal technology for 6G communication.In this paper,we employ Kullback-Leibler divergence(KLD)as the unified performance metric for ISAC systems and investigate constellation and beamforming design in the presence of clutters.In particular,the constellation design problem is solved via the successive convex approximation(SCA)technique,and the optimal beamforming in terms of sensing KLD is proven to be equivalent to maximizing the signal-to-interference-plus-noise ratio(SINR)of echo signals.Numerical results demonstrate the tradeoff between sensing and communication performance under different parameter setups.Additionally,the beampattern generated by the proposed algorithm achieves significant clutter suppression and higher SINR of echo signals compared with the conventional scheme.展开更多
The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov ...The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov Chain Monte Carlo(MCMC) sampling technique,which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework.In contrast to the global optimization algorithm,the Bayesian-MCMC can obtain not only the approximate solutions,but also the probability distributions of the solutions,that is,uncertainty analyses of solutions.The Bayesian-MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar seaclutter data.Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter.The inversion algorithm is assessed(i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data;(ii) the one-dimensional(1D) and two-dimensional(2D) posterior probability distribution of solutions.展开更多
A modified GIT model for describing the variational trend of mean clutter reflectivity as a function of wind speed is proposed. It uses two slope adjustment factors and two critical wind-speed factors to define and ad...A modified GIT model for describing the variational trend of mean clutter reflectivity as a function of wind speed is proposed. It uses two slope adjustment factors and two critical wind-speed factors to define and adjust the increasing slope of reflectivity with respect to wind speed. In addition, it uses a constant factor to compensate the overall amplitude of clutter reflectivity. The performance of the modified GIT model has been verified on the basis of the L-band low-grazing-angle radar sea clutter data. The results are in good agreement with the experimental data, indicating that the model is more effective in predicting the wind-speed behavior of clutter reflectivity than the conventional GIT model, especially for lower and higher wind speeds. We believe that the proposed model can provide deeper insights into the relationship between radar sea clutter reflectivity and sea state conditions.展开更多
The wireless communication systems based on Unmanned Aerial Vehicles(UAVs) have found a wide range of applications recently. In this paper, we propose a new three-dimensional(3 D) non-stationary multiple-input multipl...The wireless communication systems based on Unmanned Aerial Vehicles(UAVs) have found a wide range of applications recently. In this paper, we propose a new three-dimensional(3 D) non-stationary multiple-input multiple-output(MIMO) channel model for the communication links between the UAV and mobile terminal(MT). The new model originates the traditional geometry-based stochastic models(GBSMs) but considers the non-stationary propagation environment due to the rapid movements of the UAV, MT, and clusters. Meanwhile, the upgrade time evolving algorithms of time-variant channel parameters, i.e., the path number based on birth-death processes of clusters, path delays, path powers, and angles of arrival and departure, are developed and optimized. In addition, the statistical properties of proposed GBSM including autocorrelation function(ACF), cross-correlation function(CCF), and Doppler power spectrum density(DPSD) are investigated and analyzed. Simulation results demonstrate that our proposed model provides a good agreement on the statistical properties with the corresponding derived theoretical ones, which indicates its usefulness for the performance evaluation and validation of the UAV based communication systems.展开更多
This paper addresses the problem of estimating the lower atmospheric refractivity (M profile) under nonstandard propagation conditions frequently encountered in low altitude maritime radar applications. The vertical...This paper addresses the problem of estimating the lower atmospheric refractivity (M profile) under nonstandard propagation conditions frequently encountered in low altitude maritime radar applications. The vertical structure of the refractive environment is modeled using five parameters and the horizontal structure is modeled using five parameters. The refractivity model is implemented with and without a priori constraint on the duct strength as might be derived from soundings or numerical weather-prediction models. An electromagnetic propagation model maps the refractivity structure into a replica field. Replica fields are compared with the observed clutter using a squared-error objective function. A global search for the 10 environmental parameters is performed using genetic algorithms. The inversion algorithm is implemented on the basis of S-band radar sea-clutter data from Wallops Island, Virginia (SPANDAR). Reference data are from range-dependent refractivity profiles obtained with a helicopter. The inversion is assessed (i) by comparing the propagation predicted from the radar-inferred refractivity profiles with that from the helicopter profiles, (ii) by comparing the refractivity parameters from the helicopter soundings with those estimated. This technique could provide near-real-time estimation of ducting effects.展开更多
In this article, a reduced mixed finite element (MFE) formulation based on proper orthogonal decomposition (POD) for the non-stationary conduction-convection problems is presented. Also the error estimates between...In this article, a reduced mixed finite element (MFE) formulation based on proper orthogonal decomposition (POD) for the non-stationary conduction-convection problems is presented. Also the error estimates between the reduced MFE solutions based on POD and usual MFE solutions are derived. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced MFE formulation based on POD is feasible and efficient in finding numerical solutions for the non-stationary conduction-convection problems.展开更多
Measurement of shipborne radar sea echo is instrumental in collecting the sea clutter data in open sea areas.However,the ship movement would introduce an extra Doppler component into the spectrum of the sea clutter,so...Measurement of shipborne radar sea echo is instrumental in collecting the sea clutter data in open sea areas.However,the ship movement would introduce an extra Doppler component into the spectrum of the sea clutter,so the sea clutter inherent spectrum must be estimated prior to investigating the sea clutter Doppler characteristics from the shipborne radar sea echo.In this paper we show some results about a shipborne sea clutter measurement experiment that was conducted in the South China Sea in a period between 2017 and 2018;abundant clutter data have been collected by using a shipborne S-band clutter measurement radar.To obtain the sea clutter inherent Doppler spectrum from these data,an estimation method,based on the mapping relationship between the shipborne clutter spectrum and the inherent clutter spectrum,is proposed.This method is validated by shipborne clutter data sets under the same measuring conditions except for the ship speed.Using this method,the characteristics of the Doppler spectrum lineshapes in the South China Sea are calculated and analyzed according to different sea states,wave directions,and radar resolutions,which can be instrumental in designing the radar target detection algorithms.展开更多
This paper describes a technique to estimate surface-based duct parameters by using a simple ray tracing/correlation method. The approach is novel in that it incorporates the Spearman rank-order correlation scheme bet...This paper describes a technique to estimate surface-based duct parameters by using a simple ray tracing/correlation method. The approach is novel in that it incorporates the Spearman rank-order correlation scheme between the observed surface clutter and the surface ray density for a given propagation path. The simulation results and the real data results both demonstrate the ability of this method to estimate surface-based duct parameters. Compared with the results obtained by a modified genetic algorithm combined with the parabolic wave equation, the results retrieved from the ray tracing/correlation scheme show a minor reduction in accuracy but a great improvement on computation time. Therefore the ray tracing/correlation method might be used as a precursor to more sophisticated and slower techniques, such as genetic algorithm and particle filters, by narrowing the parameter search space and providing a comprehensive and more efficient estimation algorithm.展开更多
A novel clutter suppression method in ground penetrating radar (GPR) is proposed. The preliminary result is obtained by using target resolution improved processing (TRIP). The preliminary result will be used as an...A novel clutter suppression method in ground penetrating radar (GPR) is proposed. The preliminary result is obtained by using target resolution improved processing (TRIP). The preliminary result will be used as an initial input for TRIP iteration. All TRIP iteration steps are the adaptive linear combination of the previous TRIP result and the preliminary result. This adaptive combination strategy can balance clutter suppression and target information protection, which is considered as a troublesome contradiction and a chronic problem in clutter suppression research. When the matrix entropy of iteration result converges, the algorithm can achieve a good result both in clutter suppression and target protection. Experimental results demonstrate that the new algorithm outperforms the existing approaches.展开更多
An effective approach in solving the sea clutter spectrum extraction problem is studied in the paper.Different from the conventional signal to noise ratio(SNR)method based on Doppler frequency or range domain inform...An effective approach in solving the sea clutter spectrum extraction problem is studied in the paper.Different from the conventional signal to noise ratio(SNR)method based on Doppler frequency or range domain information,a method is developed to characterize the differences between the sea echo and those interferences are by signal to interference plus noise ratio(SINR)which jointly utilizing the range,Doppler frequency and azimuth domain information.Furthermore,these differences can be adaptable to adverse conditions by forming the necessary boundaries and constraints in searching of the maximum SINR,which greatly promotes the extraction of sea clutter spectrum.The real high frequency surface wave radar(HFSWR)data demonstrate that the proposed method is less influenced by those interferences and can effectively extract the sea clutter spectrum even under the adverse conditions.Furthermore,it has been shown as an effective method for ship detection and sea state remote sensing of HFSWR.展开更多
基金Project supported by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(Grant No.GZC20231050)the National Natural Science Foundation of China(Grant Nos.12175193 and 11905183)the 13th Five-year plan for Education Science Funding of Guangdong Province(Grant No.2021GXJK349)。
文摘For non-stationary complex dynamic systems,a standardized algorithm is developed to compute time correlation functions,addressing the limitations of traditional methods reliant on the stationary assumption.The proposed algorithm integrates two-point and multi-point time correlation functions into a unified framework.Further,it is verified by a practical application in complex financial systems,demonstrating its potential in various complex dynamic systems.
基金supported in part by National Key R&D Program of China under Grant No.2021YFB2900200in part by National Natural Science Foundation of China under Grant Nos.U20B2039 and 62301032in part by China Postdoctoral Science Foundation under Grant No.2023TQ0028.
文摘Integrated sensing and communication(ISAC)is regarded as a pivotal technology for 6G communication.In this paper,we employ Kullback-Leibler divergence(KLD)as the unified performance metric for ISAC systems and investigate constellation and beamforming design in the presence of clutters.In particular,the constellation design problem is solved via the successive convex approximation(SCA)technique,and the optimal beamforming in terms of sensing KLD is proven to be equivalent to maximizing the signal-to-interference-plus-noise ratio(SINR)of echo signals.Numerical results demonstrate the tradeoff between sensing and communication performance under different parameter setups.Additionally,the beampattern generated by the proposed algorithm achieves significant clutter suppression and higher SINR of echo signals compared with the conventional scheme.
基金Project supported by the National Natural Science Foundation of China (Grant No. 41105013)the National Natural Science Foundation of Jiangsu Province,China (Grant No. BK2011122)+1 种基金the Open Issue Foundation of Key Laboratory of Meteorological Disaster of Ministry of Education,China (Grant No. KLME1109)the City Meteorological Scientific Research Fund,China (Grant No. IUMKY&UMRF201111)
文摘The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov Chain Monte Carlo(MCMC) sampling technique,which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework.In contrast to the global optimization algorithm,the Bayesian-MCMC can obtain not only the approximate solutions,but also the probability distributions of the solutions,that is,uncertainty analyses of solutions.The Bayesian-MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar seaclutter data.Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter.The inversion algorithm is assessed(i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data;(ii) the one-dimensional(1D) and two-dimensional(2D) posterior probability distribution of solutions.
基金Project supported by the National Natural Science Foundation of China(Grant No.61172031)
文摘A modified GIT model for describing the variational trend of mean clutter reflectivity as a function of wind speed is proposed. It uses two slope adjustment factors and two critical wind-speed factors to define and adjust the increasing slope of reflectivity with respect to wind speed. In addition, it uses a constant factor to compensate the overall amplitude of clutter reflectivity. The performance of the modified GIT model has been verified on the basis of the L-band low-grazing-angle radar sea clutter data. The results are in good agreement with the experimental data, indicating that the model is more effective in predicting the wind-speed behavior of clutter reflectivity than the conventional GIT model, especially for lower and higher wind speeds. We believe that the proposed model can provide deeper insights into the relationship between radar sea clutter reflectivity and sea state conditions.
基金supported by the National Key Scientific Instrument and Equipment Development Project(Grant No.2013YQ200607)China NSF Grants(Grant No.61631020)+1 种基金Aeronautical Science Foundation of China(Grant No.2017ZC52021)Open Foundation for Graduate Innovation of NUAA(Grant No.kfjj20170405 and kfjj20180408)
文摘The wireless communication systems based on Unmanned Aerial Vehicles(UAVs) have found a wide range of applications recently. In this paper, we propose a new three-dimensional(3 D) non-stationary multiple-input multiple-output(MIMO) channel model for the communication links between the UAV and mobile terminal(MT). The new model originates the traditional geometry-based stochastic models(GBSMs) but considers the non-stationary propagation environment due to the rapid movements of the UAV, MT, and clusters. Meanwhile, the upgrade time evolving algorithms of time-variant channel parameters, i.e., the path number based on birth-death processes of clusters, path delays, path powers, and angles of arrival and departure, are developed and optimized. In addition, the statistical properties of proposed GBSM including autocorrelation function(ACF), cross-correlation function(CCF), and Doppler power spectrum density(DPSD) are investigated and analyzed. Simulation results demonstrate that our proposed model provides a good agreement on the statistical properties with the corresponding derived theoretical ones, which indicates its usefulness for the performance evaluation and validation of the UAV based communication systems.
基金supported by the National Natural Science Foundation of China (Grant No.41105013)the Natural Science Foundation of Jiangsu Province,China (Grant No.BK2011122)the Specialized Research Fund for State Key Laboratories,China (Grant No.201120FSIC-03)
文摘This paper addresses the problem of estimating the lower atmospheric refractivity (M profile) under nonstandard propagation conditions frequently encountered in low altitude maritime radar applications. The vertical structure of the refractive environment is modeled using five parameters and the horizontal structure is modeled using five parameters. The refractivity model is implemented with and without a priori constraint on the duct strength as might be derived from soundings or numerical weather-prediction models. An electromagnetic propagation model maps the refractivity structure into a replica field. Replica fields are compared with the observed clutter using a squared-error objective function. A global search for the 10 environmental parameters is performed using genetic algorithms. The inversion algorithm is implemented on the basis of S-band radar sea-clutter data from Wallops Island, Virginia (SPANDAR). Reference data are from range-dependent refractivity profiles obtained with a helicopter. The inversion is assessed (i) by comparing the propagation predicted from the radar-inferred refractivity profiles with that from the helicopter profiles, (ii) by comparing the refractivity parameters from the helicopter soundings with those estimated. This technique could provide near-real-time estimation of ducting effects.
基金supported by the National Science Foundation of China (10871022 11061009+5 种基金 40821092)the National Basic Research Program (2010CB428403 2009CB421407 2010CB951001)Natural Science Foundation of Hebei Province (A2010001663)Chinese Universities Scientific Fund (2009-2-05)
文摘In this article, a reduced mixed finite element (MFE) formulation based on proper orthogonal decomposition (POD) for the non-stationary conduction-convection problems is presented. Also the error estimates between the reduced MFE solutions based on POD and usual MFE solutions are derived. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced MFE formulation based on POD is feasible and efficient in finding numerical solutions for the non-stationary conduction-convection problems.
基金National Natural Science Foundation of China(Grant No.61801446).
文摘Measurement of shipborne radar sea echo is instrumental in collecting the sea clutter data in open sea areas.However,the ship movement would introduce an extra Doppler component into the spectrum of the sea clutter,so the sea clutter inherent spectrum must be estimated prior to investigating the sea clutter Doppler characteristics from the shipborne radar sea echo.In this paper we show some results about a shipborne sea clutter measurement experiment that was conducted in the South China Sea in a period between 2017 and 2018;abundant clutter data have been collected by using a shipborne S-band clutter measurement radar.To obtain the sea clutter inherent Doppler spectrum from these data,an estimation method,based on the mapping relationship between the shipborne clutter spectrum and the inherent clutter spectrum,is proposed.This method is validated by shipborne clutter data sets under the same measuring conditions except for the ship speed.Using this method,the characteristics of the Doppler spectrum lineshapes in the South China Sea are calculated and analyzed according to different sea states,wave directions,and radar resolutions,which can be instrumental in designing the radar target detection algorithms.
基金Project supported by the National Natural Science Foundation of China (Grant No. 40775025)
文摘This paper describes a technique to estimate surface-based duct parameters by using a simple ray tracing/correlation method. The approach is novel in that it incorporates the Spearman rank-order correlation scheme between the observed surface clutter and the surface ray density for a given propagation path. The simulation results and the real data results both demonstrate the ability of this method to estimate surface-based duct parameters. Compared with the results obtained by a modified genetic algorithm combined with the parabolic wave equation, the results retrieved from the ray tracing/correlation scheme show a minor reduction in accuracy but a great improvement on computation time. Therefore the ray tracing/correlation method might be used as a precursor to more sophisticated and slower techniques, such as genetic algorithm and particle filters, by narrowing the parameter search space and providing a comprehensive and more efficient estimation algorithm.
基金supported by the National Natural Science Foundation of China under Grant No. 40976114the National 863 Program under Grant No. 2008AA121702-3
文摘A novel clutter suppression method in ground penetrating radar (GPR) is proposed. The preliminary result is obtained by using target resolution improved processing (TRIP). The preliminary result will be used as an initial input for TRIP iteration. All TRIP iteration steps are the adaptive linear combination of the previous TRIP result and the preliminary result. This adaptive combination strategy can balance clutter suppression and target information protection, which is considered as a troublesome contradiction and a chronic problem in clutter suppression research. When the matrix entropy of iteration result converges, the algorithm can achieve a good result both in clutter suppression and target protection. Experimental results demonstrate that the new algorithm outperforms the existing approaches.
基金Supported by the National Natural Science Foundation of China(61501131,61171180)National Marine Technology Program for Public Welfare(201505002)Fundamental Research Funds for the Central Universities(HIT.MKSTISP.2016 26)
文摘An effective approach in solving the sea clutter spectrum extraction problem is studied in the paper.Different from the conventional signal to noise ratio(SNR)method based on Doppler frequency or range domain information,a method is developed to characterize the differences between the sea echo and those interferences are by signal to interference plus noise ratio(SINR)which jointly utilizing the range,Doppler frequency and azimuth domain information.Furthermore,these differences can be adaptable to adverse conditions by forming the necessary boundaries and constraints in searching of the maximum SINR,which greatly promotes the extraction of sea clutter spectrum.The real high frequency surface wave radar(HFSWR)data demonstrate that the proposed method is less influenced by those interferences and can effectively extract the sea clutter spectrum even under the adverse conditions.Furthermore,it has been shown as an effective method for ship detection and sea state remote sensing of HFSWR.