期刊文献+
共找到139篇文章
< 1 2 7 >
每页显示 20 50 100
Elastic Multiple Kernel Learning 被引量:6
1
作者 WU Zheng-Peng ZHANG Xue-Gong 《自动化学报》 EI CSCD 北大核心 2011年第6期693-699,共7页
(MKL ) 多重核学习被建议处理核熔化。MKL 听说线性联合几个核并且解决同时与联合的核联系的支持的向量机器(SVM ) 。MKL 的当前的框架鼓励核联合系数的稀少。核的重要部分什么时候是增进知识的,强迫稀少,趋于选择仅仅一些核并且可以... (MKL ) 多重核学习被建议处理核熔化。MKL 听说线性联合几个核并且解决同时与联合的核联系的支持的向量机器(SVM ) 。MKL 的当前的框架鼓励核联合系数的稀少。核的重要部分什么时候是增进知识的,强迫稀少,趋于选择仅仅一些核并且可以忽略有用信息。在这份报纸,我们建议学习的有弹性的多重核(EMKL ) 完成适应的核熔化。EMKL 使用混合规则化功能损害稀少和非稀少。MKL 和 SVM 能被认为是 EMKL 的特殊情况。为 MKL 问题基于坡度降下算法,我们建议一个快算法解决 EMKL 问题。模拟数据集上的结果证明 EMKL 的表演有利地比作 MKL 和 SVM。我们进一步把 EMKL 用于基因集合分析并且得到有希望的结果。最后,我们学习比作另外的非稀少的 MKL 的 EMKL 的理论优点。 展开更多
关键词 《自动化学报》 期刊 摘要 编辑部
在线阅读 下载PDF
Incremental support vector machine algorithm based on multi-kernel learning 被引量:7
2
作者 Zhiyu Li Junfeng Zhang Shousong Hu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期702-706,共5页
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set l... A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set learning problem can be solved effectively. Furthermore, different punishments are adopted in allusion to the training subset and the acquired support vectors, which may help to improve the performance of SVM. Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning, but also improve the classification or prediction precision. 展开更多
关键词 support vector machine (SVM) incremental learning multiple kernel learning (MKL).
在线阅读 下载PDF
基于IEO-MKELM模型的重整产品辛烷值软测量方法
3
作者 陈晓彦 赵超 +2 位作者 付斌 李卫东 范克威 《石油与天然气化工》 北大核心 2025年第4期131-139,共9页
目的针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEOMKELM)辛烷值软测量模型。方法采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高... 目的针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEOMKELM)辛烷值软测量模型。方法采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高全局和局部搜索能力的改进平衡算法(IEO)。随后将这一改进后的平衡优化算法应用于多核极限学习机(MKELM)多项参数的优化,进而建立了催化重整产品辛烷值软测量模型。结果利用某炼化企业的实测数据对模型精度进行验证,结果表明,由IEO-MKELM模型得到的预测值与实测值间的误差在10^(−3)数量级以下,与其他同类模型相比,IEO-MKELM模型具有更高的预测精度。结论基于IEO-MKELM的辛烷值软测量方法研究对于提高催化重整生产过程的自动化水平具有重要意义。 展开更多
关键词 IEO-MKELM 平衡优化算法 多核极限学习机 辛烷值 软测量 预测模型
在线阅读 下载PDF
基于GASF-BMKELM的滚动轴承故障诊断方法
4
作者 杨锡发 王林军 +3 位作者 邹腾枭 吴振雄 李响 陈保家 《三峡大学学报(自然科学版)》 北大核心 2025年第4期96-103,共8页
针对传统故障诊断方法难以充分提取故障信息以及神经网络依赖初始参数选择的问题,提出一种基于格拉姆角和场(Gramian angular summation field,GASF)与贝叶斯优化多核极限学习机(Bayesian optimization multi-kernel extreme learning m... 针对传统故障诊断方法难以充分提取故障信息以及神经网络依赖初始参数选择的问题,提出一种基于格拉姆角和场(Gramian angular summation field,GASF)与贝叶斯优化多核极限学习机(Bayesian optimization multi-kernel extreme learning machine,BMKELM)的故障诊断方法.首先,应用小波包节点对数能量与格拉姆角和场(GASF)将原始振动信号变换为小波包对数能量图特征;其次,使用多项式核函数与径向基核函数加权组合构建多核极限学习机(multi-kernel extreme learning machine,MKELM),同时,利用贝叶斯优化算法优化多核极限学习机的参数来提升诊断模型的故障识别能力;最后,以小波包对数能量图特征作为输入,再使用BMKELM模型完成故障特征识别与分类.通过两个数据集进行验证分析,实验结果表明,所提方法的准确率分别为99.39%和98.89%,具有较高的故障识别率和稳定性. 展开更多
关键词 滚动轴承 格拉姆角和场 小波包对数能量图 多核极限学习机 贝叶斯优化算法 故障诊断
在线阅读 下载PDF
基于多核学习算法的潜在域无监督域自适应
5
作者 姜磊 章小卫 《计算机应用与软件》 北大核心 2025年第2期314-322,共9页
为了提升无监督域自适应性能,提出一种基于多核学习算法的潜在域无监督域自适应方法。提出三个潜在域发现准则:单个潜在目标域中数据紧致性和显著性的最大化,以及潜在目标域到源域的总散度最小化。将学习到的潜在特征空间上的投影源域... 为了提升无监督域自适应性能,提出一种基于多核学习算法的潜在域无监督域自适应方法。提出三个潜在域发现准则:单个潜在目标域中数据紧致性和显著性的最大化,以及潜在目标域到源域的总散度最小化。将学习到的潜在特征空间上的投影源域数据视为源域的不同视图,缩小源域和特定潜在目标域之间的差异。在不同的视觉识别任务上的实验结果表明,该算法具有更好的分类精度与鲁棒性。 展开更多
关键词 无监督 域自适应 多核学习 潜在域
在线阅读 下载PDF
基于多核扩展卷积的无监督视频行人重识别
6
作者 刘仲民 张长凯 胡文瑾 《数据采集与处理》 CSCD 北大核心 2024年第5期1192-1203,共12页
行人重识别旨在跨监控摄像头下检索出特定的行人目标。由于存在姿态变化、物体遮挡和背景干扰的不同成像条件等问题,导致行人特征提取不充分。本文提出一种利用多核扩展卷积的无监督视频行人重识别方法,使得提取到的行人特征能够更全面... 行人重识别旨在跨监控摄像头下检索出特定的行人目标。由于存在姿态变化、物体遮挡和背景干扰的不同成像条件等问题,导致行人特征提取不充分。本文提出一种利用多核扩展卷积的无监督视频行人重识别方法,使得提取到的行人特征能够更全面、更准确地表达个体差异和特征信息。首先,采用预训练的ResNet50作为编码器,为了进一步提升编码器的特征提取能力,引入了多核扩展卷积模块,通过增加卷积核的感受野,使得网络能够更有效地捕获到局部和全局的特征信息,从而更全面地描述行人的外貌特征;其次,通过解码器将高级语义信息还原为更为底层的特征表示,从而增强特征表示,提高系统在复杂成像条件下的性能;最后,在解码器的输出中引入多尺度特征融合模块融合相邻层中的特征,进一步减少不同特征通道层之间的语义差距,以产生更鲁棒的特征表示。在3个主流数据集上进行离线实验,结果表明该方法在准确性和鲁棒性上均取得了显著的改进。 展开更多
关键词 行人重识别 多核扩展卷积 无监督学习 特征提取 注意力机制
在线阅读 下载PDF
链式回转弹仓区间不确定性动力学模型 被引量:3
7
作者 赵伟 侯保林 +2 位作者 闫少军 鲍丹 林瑜斌 《兵工学报》 EI CAS CSCD 北大核心 2024年第6期1991-2002,共12页
针对具有区间不确定性参数的辨识问题,提出一种基于区间可能度转换模型的区间不确定性参数的双层嵌套辨识(Double-layer Nested Identification,DNI)方法。通过将待辨识参数分为两类,利用DNI方法辨识出第1类确定性参数,再通过基于DNI思... 针对具有区间不确定性参数的辨识问题,提出一种基于区间可能度转换模型的区间不确定性参数的双层嵌套辨识(Double-layer Nested Identification,DNI)方法。通过将待辨识参数分为两类,利用DNI方法辨识出第1类确定性参数,再通过基于DNI思想的区间优化方法优化第2类区间不确定性参数的区间范围;面向嵌套策略类型方法计算量庞大且效率低的问题,选用贝叶斯优化-粒子群优化(Bayesian Optimization-Particle Swarm Optimization,BO-PSO)方法作为内层算法以提高求解效率。DNI方法的内层利用BO-PSO方法计算区间上下界,外层利用改进型布谷鸟搜索(Improved Cuckoo Search,ICS)方法辨识特定参数。为进一步缩短求解时间,提出一种ICS多核极限学习机(ICS-Multiple Kernel-Extreme Learning Machine,ICS-MK-ELM)代理模型,ICS-MK-ELM代理模型克服了人工调节每个核函数超参数的困难,并且模型预测精度明显高于核ELM(Kernel ELM,KELM)和MK-ELM;将DNI方法应用于链式回转弹仓的参数辨识,解决了链式弹仓具有区间不确定性参数的辨识困难的问题,参数辨识结果表明所提DNI方法以及基于DNI思想的区间优化方法具有更高的精度和稳定性。 展开更多
关键词 不确定性 区间可能度 弹仓 参数辨识 多核极限学习机 贝叶斯优化 布谷鸟搜索方法
在线阅读 下载PDF
基于测量阻抗动态轨迹的大型调相机失磁保护
8
作者 陈晓强 康纪良 +2 位作者 刘超 曹明宣 肖仕武 《电力工程技术》 北大核心 2024年第2期218-228,共11页
大型调相机失磁故障严重影响设备本体安全以及电网稳定,现有基于静态阈值的低电压与无功反向判据可靠性与选择性不足。文中提出一种可反映调相机运行状态的机端测量阻抗全局动态轨迹智能识别的失磁保护原理,从运动学角度建立能够准确反... 大型调相机失磁故障严重影响设备本体安全以及电网稳定,现有基于静态阈值的低电压与无功反向判据可靠性与选择性不足。文中提出一种可反映调相机运行状态的机端测量阻抗全局动态轨迹智能识别的失磁保护原理,从运动学角度建立能够准确反映失磁与其他工况下测量阻抗轨迹的特征量时间序列,基于统计学提取解释性强的特征量。利用自适应权重的全局与局部核函数组合训练多核支持向量机(multiple kernel learning support vector machine,MKL-SVM),在保证模型学习能力的同时增强其泛化能力;提出基于分类核空间距离的两阶段识别策略,可在保证可靠性的前提下提高保护速动性。基于PSCAD仿真平台搭建调相机接入电网模型进行验证,结果表明所提失磁保护方案无须采集转子侧电气量,识别准确,面对新能源接入和未知扰动时仍具有优良的适用性。 展开更多
关键词 调相机 失磁保护 测量阻抗轨迹 多核支持向量机(MKL-SVM) 两阶段识别 泛化能力
在线阅读 下载PDF
基于改进MKELM的红外空间锥体目标识别
9
作者 王彩云 常韵 +3 位作者 李晓飞 王佳宁 吴钇达 张慧雯 《系统工程与电子技术》 EI CSCD 北大核心 2024年第10期3257-3264,共8页
针对远距离探测时仅能获取目标的红外辐射强度序列、样本量有限、信噪比低而导致目标识别困难的问题,提出一种基于改进多核极限学习机(multiple kernel extreme learning machine,MKELM)的红外空间锥体目标识别方法。首先对红外辐射强... 针对远距离探测时仅能获取目标的红外辐射强度序列、样本量有限、信噪比低而导致目标识别困难的问题,提出一种基于改进多核极限学习机(multiple kernel extreme learning machine,MKELM)的红外空间锥体目标识别方法。首先对红外辐射强度序列进行变分模态分解(variational mode decomposition,VMD)并重构,然后对重构序列进行时域特征提取,最后采用鲸鱼优化算法(whale optimization algorithm,WOA)优化MKELM的参数组合,在仿真生成的空间锥体目标红外辐射强度序列数据集上进行目标分类识别实验。实验结果验证了所提算法的有效性,同时表明所提方法具有较好的识别准确性和鲁棒性。 展开更多
关键词 红外辐射强度序列 空间目标识别 变分模态分解 鲸鱼优化算法 多核极限学习机
在线阅读 下载PDF
多核学习方法 被引量:156
10
作者 汪洪桥 孙富春 +2 位作者 蔡艳宁 陈宁 丁林阁 《自动化学报》 EI CSCD 北大核心 2010年第8期1037-1050,共14页
多核学习方法是当前核机器学习领域的一个新的热点.核方法是解决非线性模式分析问题的一种有效方法,但在一些复杂情形下,由单个核函数构成的核机器并不能满足诸如数据异构或不规则、样本规模巨大、样本不平坦分布等实际的应用需求,因此... 多核学习方法是当前核机器学习领域的一个新的热点.核方法是解决非线性模式分析问题的一种有效方法,但在一些复杂情形下,由单个核函数构成的核机器并不能满足诸如数据异构或不规则、样本规模巨大、样本不平坦分布等实际的应用需求,因此将多个核函数进行组合,以获得更好的结果是一种必然选择.本文根据多核的构成,从合成核、多尺度核、无限核三个角度,系统综述了多核方法的构造理论,分析了多核学习典型方法的特点及不足,总结了各自的应用领域,并凝炼了其进一步的研究方向. 展开更多
关键词 核方法 多核学习 合成核 多尺度核 支持向量机 模式识别 回归
在线阅读 下载PDF
应用多分类多核学习支持向量机的变压器故障诊断方法 被引量:97
11
作者 郭创新 朱承治 +2 位作者 张琳 彭明伟 刘毅 《中国电机工程学报》 EI CSCD 北大核心 2010年第13期128-134,共7页
提出一种基于多分类多核学习支持向量机的变压器故障诊断方法,相对于传统的2分类支持向量机,该方法有如下特点:算法针对单一的优化目标函数求解,只需设计1组参数,降低了支持向量机在解决多类问题中模型构造和参数选择的难度;核函数是多... 提出一种基于多分类多核学习支持向量机的变压器故障诊断方法,相对于传统的2分类支持向量机,该方法有如下特点:算法针对单一的优化目标函数求解,只需设计1组参数,降低了支持向量机在解决多类问题中模型构造和参数选择的难度;核函数是多个基核函数的组合,提高了分类的精度;将模型分解为2个凸优问题进行求解,问题的复杂度低,求解速度快。诊断实例表明,该方法能保证较高的诊断准确率,具有较好的实用性和推广性。 展开更多
关键词 变压器 故障诊断 支持向量机 多分类多核学习
在线阅读 下载PDF
基于PU学习算法的虚假评论识别研究 被引量:31
12
作者 任亚峰 姬东鸿 +1 位作者 张红斌 尹兰 《计算机研究与发展》 EI CSCD 北大核心 2015年第3期639-648,共10页
识别虚假评论有着重要的理论意义与现实价值.先前工作集中于启发式策略和传统的全监督学习算法.最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚... 识别虚假评论有着重要的理论意义与现实价值.先前工作集中于启发式策略和传统的全监督学习算法.最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚假评论并不合理.容易被错误标注的样例称为间谍样例,如何确定这些样例的类别标签将直接影响分类器的性能.基于少量的真实评论和大量的未标注评论,提出一种创新的PU(positive and unlabeled)学习框架来识别虚假评论.首先,从无标注数据集中识别出少量可信度较高的负例.其次,通过整合LDA(latent Dirichlet allocation)和K-means,分别计算出多个代表性的正例和负例.接着,基于狄利克雷过程混合模型(Dirichlet process mixture model,DPMM),对所有间谍样例进行聚类,混合种群性和个体性策略来确定间谍样例的类别标签.最后,多核学习算法被用来训练最终的分类器.数值实验证实了所提算法的有效性,超过当前的基准. 展开更多
关键词 虚假评论 全监督学习 PU学习 狄利克雷过程混合模型 多核学习
在线阅读 下载PDF
基于多核学习的医学文献蛋白质关系抽取 被引量:13
13
作者 唐楠 杨志豪 +1 位作者 林鸿飞 李彦鹏 《计算机工程》 CAS CSCD 北大核心 2011年第10期184-186,共3页
从生物医学文献中抽取蛋白质交互作用关系对蛋白质知识网络的建立、新药的研制等均具有重要的意义。为此,提出一种基于多核学习的方法,用于从文献中自动抽取蛋白质关系信息。该方法融合基于特征的核、树核以及图核,并扩展最短路径依存... 从生物医学文献中抽取蛋白质交互作用关系对蛋白质知识网络的建立、新药的研制等均具有重要的意义。为此,提出一种基于多核学习的方法,用于从文献中自动抽取蛋白质关系信息。该方法融合基于特征的核、树核以及图核,并扩展最短路径依存树以及依存路径以利用更多的上下文关系信息。在AImed语料上的实验得到63.9%的F值和87.83%的AUC值,表明该方法具有较好的性能。 展开更多
关键词 文本挖掘 信息抽取 蛋白质关系抽取 核方法 多核学习
在线阅读 下载PDF
核函数的选择研究综述 被引量:54
14
作者 汪廷华 陈峻婷 《计算机工程与设计》 CSCD 北大核心 2012年第3期1181-1186,共6页
核方法是解决非线性模式分析问题的一种有效方法,是当前机器学习领域的一个研究热点。核函数是影响核方法性能的关键因素,以支持向量机作为核函数的载体,从核函数的构造、核函数中参数的选择、多核学习3个角度对核函数的选择的研究现状... 核方法是解决非线性模式分析问题的一种有效方法,是当前机器学习领域的一个研究热点。核函数是影响核方法性能的关键因素,以支持向量机作为核函数的载体,从核函数的构造、核函数中参数的选择、多核学习3个角度对核函数的选择的研究现状及其进展情况进行了系统地概述,并指出根据特定应用领域选择核函数、设计有效的核函数度量标准和拓宽核函数选择的研究范围是其中3个值得进一步研究的方向。 展开更多
关键词 核函数 支持向量机 核方法 模型选择 多核学习
在线阅读 下载PDF
用于水泥熟料fCaO预测的多核最小二乘支持向量机模型 被引量:11
15
作者 赵朋程 刘彬 +2 位作者 高伟 赵志彪 王美琪 《化工学报》 EI CAS CSCD 北大核心 2016年第6期2480-2487,共8页
针对水泥熟料游离氧化钙(fCaO)含量预测模型辨识的问题,考虑到单一核函数无法显著提高模型精度,采用多项式核函数、指数径向基核函数和高斯径向基核函数组合构建等价核的方法,建立了多核最小二乘支持向量机水泥熟料fCaO预测模型。同时,... 针对水泥熟料游离氧化钙(fCaO)含量预测模型辨识的问题,考虑到单一核函数无法显著提高模型精度,采用多项式核函数、指数径向基核函数和高斯径向基核函数组合构建等价核的方法,建立了多核最小二乘支持向量机水泥熟料fCaO预测模型。同时,利用改进的粒子群优化算法对多核最小二乘支持向量机模型的6个待确定参数进行迭代寻优,避免了模型参数人工选取的盲目性。最后将基于改进粒子群的多核最小二乘支持向量机模型应用于熟料fCaO含量的实例仿真。结果表明,建立的水泥熟料fCaO含量预测模型精度高、泛化能力强。 展开更多
关键词 多核学习 最小二乘支持向量机 模型 优化 算法 随机扰动
在线阅读 下载PDF
多核学习融合局部和全局特征的人脸识别算法 被引量:11
16
作者 杨赛 赵春霞 刘凡 《电子学报》 EI CAS CSCD 北大核心 2016年第10期2344-2350,共7页
提出一种基于词袋模型的新的人脸识别算法.该方法将词袋模型和词袋模型的全局模式分别作为人脸图像的局部特征和全局特征描述,最后使用多核学习方法将二者进行融合.AR、FERET、CMU PIE以及LFW公开人脸数据库上的实验结果表明,本文方法... 提出一种基于词袋模型的新的人脸识别算法.该方法将词袋模型和词袋模型的全局模式分别作为人脸图像的局部特征和全局特征描述,最后使用多核学习方法将二者进行融合.AR、FERET、CMU PIE以及LFW公开人脸数据库上的实验结果表明,本文方法能够更好的解决小样本问题,并且对人脸的表情变化、姿态变化以及面部遮挡具有更优良的鲁棒性. 展开更多
关键词 词袋模型 全局特征 多核学习 人脸识别
在线阅读 下载PDF
基于多核学习的装配工艺过程重用 被引量:6
17
作者 王裴岩 张桂平 +1 位作者 翟顺龙 蔡东风 《计算机集成制造系统》 EI CSCD 北大核心 2018年第7期1850-1857,共8页
为了最大程度复用历史工艺过程,提高工艺设计效率,对装配工艺过程重用问题进行了研究,提出了一种基于多核学习的方法。该方法利用了工艺规程名称、规程编号、设计人与装配零件表等直接获取特征,不需要人工确定特征的表达符号集与标注数... 为了最大程度复用历史工艺过程,提高工艺设计效率,对装配工艺过程重用问题进行了研究,提出了一种基于多核学习的方法。该方法利用了工艺规程名称、规程编号、设计人与装配零件表等直接获取特征,不需要人工确定特征的表达符号集与标注数据;通过定义多个核函数,从不同视角衡量工艺过程的可重用性,并利用工艺大纲文件间的重用度作为指导信息,优化多核组合参数。在47 828份飞机装配工艺规程数据上,多核学习方法能够有效地对工艺规程文件进行筛选与排序,能够保证排序靠前的结果具有较高的重用度,Top 1重用度可达0.3811。实验结果证明了规程文件命名规律、企业工艺文件管理规则、装配零件表等信息在工艺过程复用中的有效性。 展开更多
关键词 装配工艺过程重用 核函数 多核学习 飞机装配
在线阅读 下载PDF
基于KPCA和MKL-SVM的非线性过程监控与故障诊断 被引量:31
18
作者 许洁 胡寿松 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第11期2428-2433,共6页
利用核主元分析非线性过程监控的优势,结合多重核学习支持向量机在故障诊断方面的准确性,提出了基于核主元分析和多重核学习支持向量机的非线性过程监控与故障诊断方法。该方法运用核主元法对数据进行处理,在特征空间构建T2和SPE来检测... 利用核主元分析非线性过程监控的优势,结合多重核学习支持向量机在故障诊断方面的准确性,提出了基于核主元分析和多重核学习支持向量机的非线性过程监控与故障诊断方法。该方法运用核主元法对数据进行处理,在特征空间构建T2和SPE来检测故障的发生,若有故障发生,则计算样本的非线性主元得分向量,将其作为MKL-SVM的输入值,通过MKL-SVM的分类进行故障类型识别。将上述方法应用到Tennessee Eastman(TE)化工过程,多种故障模式的仿真结果表明该方法不但能有效地辨识故障,而且提高了故障检测和故障诊断的速度。 展开更多
关键词 核主元分析 多重核学习 支持向量机 过程监控 故障诊断
在线阅读 下载PDF
基于分合闸线圈电流的万能式断路器故障诊断 被引量:31
19
作者 孙曙光 张强 +2 位作者 杜太行 金少华 王佳兴 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第2期130-140,共11页
分合闸线圈作为低压万能式断路器操作机构的关键部件,传统的检修方式只能发现其显性故障,而对内部隐性故障不易检测,根据线圈电流能够有效反映断路器的分合闸运动特性,提出一种基于线圈电流的低压万能式断路器故障诊断和程度评估方法,... 分合闸线圈作为低压万能式断路器操作机构的关键部件,传统的检修方式只能发现其显性故障,而对内部隐性故障不易检测,根据线圈电流能够有效反映断路器的分合闸运动特性,提出一种基于线圈电流的低压万能式断路器故障诊断和程度评估方法,其适用于出厂试验和现场检修。通过对分合闸过程中线圈电流信号特性进行分析,首先将电流信号进行关键时间、电流幅值提取作为局部特征,对电流信号经过集合经验模态分解后,提取各分量的能量矩作为全局特征;其次经主成分分析法降维后构建特征向量;然后采用基于遗传算法优化权值系数的多核学习支持向量机进行模式识别;当诊断出故障需要进行故障程度评估时,通过求取故障电流信号与正常电流信号的集合经验模态分解能量矩相对熵,并参照所求得的故障程度特性曲线,即可完成故障程度的定量评估。试验结果表明,该方法对于断路器分合闸线圈回路故障诊断效果良好,同时能够有效进行故障程度定量评估。 展开更多
关键词 线圈电流 万能式断路器 故障诊断 故障程度评估 多核支持向量机
在线阅读 下载PDF
多隐层输出矩阵极限学习机 被引量:12
20
作者 张文博 姬红兵 +1 位作者 王磊 朱明哲 《系统工程与电子技术》 EI CSCD 北大核心 2014年第8期1656-1659,共4页
得益于隐层节点学习参数的随机选择,极限学习机(extreme learning machine,ELM)在学习速度极快的基础上,可以达到较为良好的分类性能。但是,当隐层节点参数完全随机选择时,ELM的性能并不总能达到最优。本文提出多隐层输出矩阵极限学习机... 得益于隐层节点学习参数的随机选择,极限学习机(extreme learning machine,ELM)在学习速度极快的基础上,可以达到较为良好的分类性能。但是,当隐层节点参数完全随机选择时,ELM的性能并不总能达到最优。本文提出多隐层输出矩阵极限学习机(multiple hidden layer output matrices extreme learning machine,M-ELM)方法解决这一问题,该方法通过对不同输出矩阵加权运算以优化隐层节点结构,其中权系数与输出权值在学习过程中同时分析确定。另外,利用该方法可以实现特征级融合ELM。实验证明,对于真实分类问题,M-ELM可以提供比ELM更为准确的分类结果。 展开更多
关键词 极限学习机 多核学习 特征级融合 混合蛙跳算法
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部