Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study...Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study presents four SVR models by selecting linear, radial basis, spline, and polynomial functions as kernels, respectively for the prediction of urban dust fall levels. The inputs of the models are identified as industrial coal consumption, population density, traffic flow coefficient, and shopping density coefficient. The training and testing results show that the SVR model with radial basis kernel performs better than the other three both in the training and testing processes. In addition, a number of scenario analyses reveal that the most suitable parameters (insensitive loss function e, the parameter to reduce the influence of error C, and discrete level or average distribution of parameters σ) are 0.001, 0.5, and 2 000, respectively.展开更多
The general regression neural network(GRNN) model was proposed to model and predict the length of day(LOD) change, which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmosph...The general regression neural network(GRNN) model was proposed to model and predict the length of day(LOD) change, which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmospheric angular momentum(AAM) function is tightly correlated with the LOD changes, it was introduced into the GRNN prediction model to further improve the accuracy of prediction. Experiments with the observational data of LOD changes show that the prediction accuracy of the GRNN model is 6.1% higher than that of BP network, and after introducing AAM function, the improvement of prediction accuracy further increases to 14.7%. The results show that the GRNN with AAM function is an effective prediction method for LOD changes.展开更多
锂电池健康状态(state of health, SOH)的退化过程在一定程度上是一个非平稳随机过程,使得当前多数点估计机器学习方法在实际应用中受到限制。基于贝叶斯理论的高斯过程回归(Gaussian process regression,GPR),因可输出估计结果的不确定...锂电池健康状态(state of health, SOH)的退化过程在一定程度上是一个非平稳随机过程,使得当前多数点估计机器学习方法在实际应用中受到限制。基于贝叶斯理论的高斯过程回归(Gaussian process regression,GPR),因可输出估计结果的不确定性,近年来在锂电池SOH区间估计中得到广泛应用。然而,GPR的性能很大程度上取决于其核函数的选择,当前研究多凭借经验选用固定单一核函数,无法适应不同的数据集。为此,本文提出一种基于自适应最优组合核函数GPR的锂电池SOH区间估计方法。该方法首先从电池充放电数据中提取出多个健康因子(health factor, HF),并采用皮尔森相关系数法优选出6个与SOH高度相关的健康因子作为模型的输入。然后,在当前常用的7个核函数集合上,通过两两随机组合构造新的组合核函数,并利用交叉验证自适应优选出最优组合核函数。采用3个不同数据集对所提方法进行了验证,结果表明:本文方法具有出色的SOH区间估计性能。在3个公开数据集上,平均区间宽度指标在0.0509以内,平均区间分数大于-0.0004,均方根误差小于0.0181。展开更多
基金Projects(2007JT3018, 2008JT1013, 2009FJ4056) supported by the Key Project in Hunan Science and Technology Program, ChinaProject(20090161120014) supported by the New Teachers Sustentation Fund in Doctoral Program, Ministry of Education, China
文摘Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study presents four SVR models by selecting linear, radial basis, spline, and polynomial functions as kernels, respectively for the prediction of urban dust fall levels. The inputs of the models are identified as industrial coal consumption, population density, traffic flow coefficient, and shopping density coefficient. The training and testing results show that the SVR model with radial basis kernel performs better than the other three both in the training and testing processes. In addition, a number of scenario analyses reveal that the most suitable parameters (insensitive loss function e, the parameter to reduce the influence of error C, and discrete level or average distribution of parameters σ) are 0.001, 0.5, and 2 000, respectively.
基金Projects(U1231105,10878026)supported by the National Natural Science Foundation of China
文摘The general regression neural network(GRNN) model was proposed to model and predict the length of day(LOD) change, which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmospheric angular momentum(AAM) function is tightly correlated with the LOD changes, it was introduced into the GRNN prediction model to further improve the accuracy of prediction. Experiments with the observational data of LOD changes show that the prediction accuracy of the GRNN model is 6.1% higher than that of BP network, and after introducing AAM function, the improvement of prediction accuracy further increases to 14.7%. The results show that the GRNN with AAM function is an effective prediction method for LOD changes.
文摘锂电池健康状态(state of health, SOH)的退化过程在一定程度上是一个非平稳随机过程,使得当前多数点估计机器学习方法在实际应用中受到限制。基于贝叶斯理论的高斯过程回归(Gaussian process regression,GPR),因可输出估计结果的不确定性,近年来在锂电池SOH区间估计中得到广泛应用。然而,GPR的性能很大程度上取决于其核函数的选择,当前研究多凭借经验选用固定单一核函数,无法适应不同的数据集。为此,本文提出一种基于自适应最优组合核函数GPR的锂电池SOH区间估计方法。该方法首先从电池充放电数据中提取出多个健康因子(health factor, HF),并采用皮尔森相关系数法优选出6个与SOH高度相关的健康因子作为模型的输入。然后,在当前常用的7个核函数集合上,通过两两随机组合构造新的组合核函数,并利用交叉验证自适应优选出最优组合核函数。采用3个不同数据集对所提方法进行了验证,结果表明:本文方法具有出色的SOH区间估计性能。在3个公开数据集上,平均区间宽度指标在0.0509以内,平均区间分数大于-0.0004,均方根误差小于0.0181。