期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于可见近红外光谱技术的车蜡品牌无损鉴别方法研究 被引量:1
1
作者 张瑜 谈黎虹 何勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第2期381-384,共4页
探讨了可见-近红外光谱技术快速无损识别不同品牌车蜡的可行性。实验一共获得104样本,其中40个样本(建模集)用于建立模型,剩余64个样本(预测集)被用于独立验证建立好的模型。基于五种不同品牌车蜡的可见-近红外光谱分别建立了线性判别分... 探讨了可见-近红外光谱技术快速无损识别不同品牌车蜡的可行性。实验一共获得104样本,其中40个样本(建模集)用于建立模型,剩余64个样本(预测集)被用于独立验证建立好的模型。基于五种不同品牌车蜡的可见-近红外光谱分别建立了线性判别分析(linear Discriminant Analysis,LDA)和最小二乘支持向量机(least square-support vector machine,LS-SVM)模型。基于两个算法的全波段光谱模型的预测集正确率分别达到了84%和97%。进一步采用连续投影算法(successive projections algorithm,SPA)算法从751波段中选取了7个特征波段(351,365,401,441,605,926和980nm)。基于SPA选择的变量建立LS-SVM模型,准确率依然保持在97%。说明SPA选择的特征波段包含了对于车蜡品牌鉴别最重要的光谱信息,而大多数无用信息则被有效剔除。将SPA与LS-SVM算法的车蜡识别模型在保证正确率的基础上,还可以大大降低模型计算复杂程度,说明该模型能快速准确的从车蜡可见-近红外光谱中提取有效信息,并实现车蜡品牌的无损鉴别。 展开更多
关键词 车蜡 Vis-NIR光谱 线性判别方法 最小二乘支持向量机 连续投影算法 Linear DISCRIMINATION analysis (LDA) least-square support vector machine (LS-SVM ) Successive projections algorithm (SPA )
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部