期刊文献+
共找到3,322篇文章
< 1 2 167 >
每页显示 20 50 100
融合蚁群算法和差分Transformer的农业机器人路径规划研究
1
作者 李娟 张振荣 《中国农机化学报》 北大核心 2025年第7期164-172,共9页
针对农业机器人在复杂田间环境中路径规划精度不足、避障能力有限的问题,提出一种融合蚁群算法和差分Transformer的新型路径规划方法。采用蚁群算法进行初始全局路径搜索,利用其分布式并行搜索能力生成初始可行路径。针对传统蚁群算法... 针对农业机器人在复杂田间环境中路径规划精度不足、避障能力有限的问题,提出一种融合蚁群算法和差分Transformer的新型路径规划方法。采用蚁群算法进行初始全局路径搜索,利用其分布式并行搜索能力生成初始可行路径。针对传统蚁群算法中信息素更新方式容易陷入局部最优、对环境动态变化适应性差的缺陷,设计差分Transformer模型替代原有的信息素更新方法。差分Transformer通过自注意力机制,捕捉路径节点之间的长距离依赖关系和非线性特征,对信息素进行更精准地更新和分配,增强算法对复杂环境的适应能力。实验结果表明,所提出的方法在路径长度、规划时间和避障成功率等指标上均优于传统算法。具体而言,与蚁群算法相比,区域规模为50时,路径长度平均减少16.8%,从平均150 m降至125 m;规划时间缩短23.5%,从平均2.13 s降至1.63 s;避障成功率提高11.2%,达到96.5%。该研究为农业机器人自主导航提供有效的解决方案,具有重要的理论意义和应用价值。 展开更多
关键词 农业机器人 路径规划 蚁群算法 差分transformer 智慧农业
在线阅读 下载PDF
基于分解技术的IZOA-Transformer-BiGRU短期风电功率预测 被引量:2
2
作者 蒲晓云 杨靖 +1 位作者 杨兴 宁媛 《电子测量技术》 北大核心 2025年第2期39-48,共10页
准确的风电功率预测对于保障电网平稳运行和提升风资源利用效率具有重要意义。针对风电功率数据的非平稳性和间歇性等特征,本文提出了一种结合数据分解技术的IZOA-Transformer-BiGRU组合预测模型,以提升短期风电功率预测的精度和可靠性... 准确的风电功率预测对于保障电网平稳运行和提升风资源利用效率具有重要意义。针对风电功率数据的非平稳性和间歇性等特征,本文提出了一种结合数据分解技术的IZOA-Transformer-BiGRU组合预测模型,以提升短期风电功率预测的精度和可靠性。首先,采用能量差值法确定变分模态分解(VMD)的子模态数,将具有较强随机波动性的原始风电功率分解为一系列相对平稳的子序列,从而更加充分地提取时序特征。其次,构建Transformer-BiGRU模型,引入多头注意力机制并行处理多个特征之间的交互关系,并利用BiGRU捕捉时序序列间的前后依赖性,从而提升预测性能。为了进一步优化模型性能,采用融合Singer混沌映射、透镜折射反向学习和单纯形法策略的改进斑马优化算法(IZOA),对Transformer-BiGRU模型的隐藏层神经元数、初始学习率、正则化系数和多头注意力头数四个关键超参数进行优化。最后,通过IZOA-Transformer-BiGRU对分解后的各子序列进行预测,经过叠加重构得到最终的预测结果。实验结果表明,与单一BiGRU模型相比,所提模型的决定系数提升了5.10%,平均绝对误差、均方根误差以及平均绝对百分比误差分别降低了56.17%、54.58%、54.55%,具有较高的预测精度。 展开更多
关键词 风电功率预测 变分模态分解 transformER 双向门控循环单元 能量差值法 斑马优化算法
在线阅读 下载PDF
基于SVMD-BKA-Transformer的IGBT寿命预测模型
3
作者 邓阳 柴琳 汪亮 《半导体技术》 北大核心 2025年第7期698-706,共9页
绝缘栅双极型晶体管(IGBT)在持续运行过程中易老化失效,引发电力电子装置故障,因此需对IGBT进行寿命预测。提出了一种改进模型用于IGBT寿命预测。首先,以集射极关断尖峰电压(V_(ce-p))为退化特征,对IGBT进行功率循环加速老化试验;获取... 绝缘栅双极型晶体管(IGBT)在持续运行过程中易老化失效,引发电力电子装置故障,因此需对IGBT进行寿命预测。提出了一种改进模型用于IGBT寿命预测。首先,以集射极关断尖峰电压(V_(ce-p))为退化特征,对IGBT进行功率循环加速老化试验;获取相关参数数据并进行处理;利用逐次变分模态分解(SVMD)技术将退化特征数据分解为多个模态。其次,构建Transformer模型,并采用黑翅鸢算法(BKA)寻找其最优超参数以提升预测精度。最后,通过实际IGBT退化特征数据对所提模型进行性能验证。实验结果表明,SVMD-BKA-Transformer模型提升了预测精度:决定系数(R^(2))达到0.9583,平均绝对误差(MAE)降至0.0295 V,均方根误差(RMSE)减小至0.0365 V,性能优于对比模型。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 寿命预测 模态分解 黑翅鸢算法(BKA) transformER
在线阅读 下载PDF
基于Transformer模型与注意力机制的差分密码分析
4
作者 肖超恩 李子凡 +2 位作者 张磊 王建新 钱思源 《计算机工程》 北大核心 2025年第1期156-163,共8页
基于差分分析的密码攻击中,通常使用贝叶斯优化方法验证部分解密的数据是否具有差分特性。目前,主要采用基于深度学习的方式训练1个差分区分器,但随着加密轮数的增加,差分特征的精确度会呈现线性降低的趋势。为此,结合注意力机制和侧信... 基于差分分析的密码攻击中,通常使用贝叶斯优化方法验证部分解密的数据是否具有差分特性。目前,主要采用基于深度学习的方式训练1个差分区分器,但随着加密轮数的增加,差分特征的精确度会呈现线性降低的趋势。为此,结合注意力机制和侧信道分析,提出了一种新的差分特性判别方法。根据多轮密文间的差分关系,基于Transformer训练了1个针对SPECK32/64算法的差分区分器。在密钥恢复攻击中,借助前一轮的密文对待区分密文影响最大特性,设计了新的密钥恢复攻击方案。在SPECK32/64算法的密钥恢复攻击中,采用26个选择明密文对,并借助第20轮密文对将第22轮65536个候选密钥范围缩小至17个以内,完成对最后两轮子密钥的恢复攻击。实验结果表明,该方法的攻击成功率达90%,可以有效应对加密轮数增多造成的密文差分特征难以识别的问题。 展开更多
关键词 transformer模型 注意力机制 差分区分器 SPECK32/64算法 密钥恢复攻击
在线阅读 下载PDF
融合Transformer网络与维纳过程的贮备系统寿命预测
5
作者 任锦程 郑建飞 +2 位作者 胡昌华 董海迪 裴洪 《哈尔滨工程大学学报》 北大核心 2025年第5期955-966,共12页
针对备件存储失效下基于深度学习的贮备系统寿命预测模型的不确定性水平难以量化,并且基于随机过程的模型在处理复杂和海量数据时存在一定的局限性问题。本文提出一种融合Transformer网络与维纳过程的非线性退化贮备系统寿命预测方法。... 针对备件存储失效下基于深度学习的贮备系统寿命预测模型的不确定性水平难以量化,并且基于随机过程的模型在处理复杂和海量数据时存在一定的局限性问题。本文提出一种融合Transformer网络与维纳过程的非线性退化贮备系统寿命预测方法。采用SG滤波器和CEEMADN算法对历史数据进行预处理提取退化趋势;通过Transformer网络自适应估计非线性维纳过程的退化趋势函数;推导出在首达时间意义下贮备系统寿命概率密度函数的解析表达式,通过数值仿真验证了该方法的有效性,并成功应用于锂电池实例进行了准确的寿命预测。 展开更多
关键词 transformer网络 退化趋势函数 贮备系统 寿命预测 维纳过程 存储失效 自适应估计 CEEMDAN算法
在线阅读 下载PDF
基于Transformer算法的智能完井异常检测方法
6
作者 ARANHA Esteves Pedro POLICARPO Angelica Nara SAMPAIO Augusto Marcio 《石油勘探与开发》 北大核心 2025年第4期907-918,共12页
提出了一种多变量石油生产时间序列数据异常检测方法,基于Transformer算法识别智能完井过程中与层段控制阀相关的异常事件,并开展应用实例分析。Transformer算法能够有效处理数据漂移、捕捉复杂规律,因此在时间序列异常检测方面具有显... 提出了一种多变量石油生产时间序列数据异常检测方法,基于Transformer算法识别智能完井过程中与层段控制阀相关的异常事件,并开展应用实例分析。Transformer算法能够有效处理数据漂移、捕捉复杂规律,因此在时间序列异常检测方面具有显著优势;采用的自注意力机制能够使相关模型适应数据分布随时间发生的漂移,从而弹性应对时间序列数据的可能变化;能够高效识别复杂的时间依赖关系和长程交互作用,而传统模型通常难以实现这一功能。在桑托斯盆地盐下油藏超深水井中进行了现场测试,结果表明:模型实现了层段控制阀异常的早期识别,从而最大限度地减少非生产时间并保护井筒完整性;准确率达到0.954 4,平衡准确率为0.969 4,F1分数为0.957 4,与以往研究中采用的模型相比提升显著。 展开更多
关键词 异常检测 智能完井 层段控制阀 井筒完整性 油井监测 深度学习 transformer算法
在线阅读 下载PDF
基于Transformer的用户侧储能设备安装智能识别方法
7
作者 邓岚 朱晔 +2 位作者 仲皆文 严一帆 王灿鑫 《农村电气化》 2025年第7期81-84,共4页
用户侧储能指的是电力用户安装的储能设备,是新型储能重要组成部分,对保障电力系统安全稳定、促进可再生能源消纳、构建新型电力系统具有重要的作用。用户侧储能的分散性使得难以全量了解储能设备的安装情况,这不仅影响政策的有效监管,... 用户侧储能指的是电力用户安装的储能设备,是新型储能重要组成部分,对保障电力系统安全稳定、促进可再生能源消纳、构建新型电力系统具有重要的作用。用户侧储能的分散性使得难以全量了解储能设备的安装情况,这不仅影响政策的有效监管,也降低了用户侧储能参与需求侧管理工作的积极性。针对这一问题,构建一种用户侧储能设备安装识别方法,通过剔除光伏出力还原用户真实负荷数据,将基于Transformer的时序分类算法首次应用于用户侧储能设备安装识别场景,实现已安装运行的储能设备精准识别,填补技术应用领域空白,支持用户侧储能设备监管工作顺利开展,推动需求侧管理优化,防止潜在的电网安全风险和波动,响应国家加强新型储能并网和调用监督与管理的政策。 展开更多
关键词 用户侧储能 分散性 transformER 时序分类算法 精准识别
在线阅读 下载PDF
基于RoBERTa和图增强Transformer的序列推荐方法 被引量:3
8
作者 王明虎 石智奎 +1 位作者 苏佳 张新生 《计算机工程》 CAS CSCD 北大核心 2024年第4期121-131,共11页
自推荐系统出现以来,有限的数据信息就一直制约着推荐算法的进一步发展。为降低数据稀疏性的影响,增强非评分数据的利用率,基于神经网络的文本推荐模型相继被提出,但主流的卷积或循环神经网络在文本语义理解和长距离关系捕捉方面存在明... 自推荐系统出现以来,有限的数据信息就一直制约着推荐算法的进一步发展。为降低数据稀疏性的影响,增强非评分数据的利用率,基于神经网络的文本推荐模型相继被提出,但主流的卷积或循环神经网络在文本语义理解和长距离关系捕捉方面存在明显劣势。为了更好地挖掘用户与商品之间的深层潜在特征,进一步提高推荐质量,提出一种基于Ro BERTa和图增强Transformer的序列推荐(RGT)模型。引入评论文本数据,首先利用预训练的Ro BERTa模型捕获评论文本中的字词语义特征,初步建模用户的个性化兴趣,然后根据用户与商品的历史交互信息,构建具有时序特性的商品关联图注意力机制网络模型,通过图增强Transformer的方法将图模型学习到的各个商品的特征表示以序列的形式输入Transformer编码层,最后将得到的输出向量与之前捕获的语义表征以及计算得到的商品关联图的全图表征输入全连接层,以捕获用户全局的兴趣偏好,实现用户对商品的预测评分。在3组真实亚马逊公开数据集上的实验结果表明,与Deep FM、Conv MF等经典文本推荐模型相比,RGT模型在均方根误差(RMSE)和平均绝对误差(MAE)2种指标上有显著提升,相较于最优对比模型最高分别提升4.7%和5.3%。 展开更多
关键词 推荐算法 评论文本 RoBERTa模型 图注意力机制 transformer机制
在线阅读 下载PDF
引入Transformer的道路小目标检测 被引量:1
9
作者 李丽芬 黄如 《计算机工程与设计》 北大核心 2024年第1期95-101,共7页
针对道路场景中检测小目标时漏检率较高、检测精度低的问题,提出一种引入Transformer的道路小目标检测算法。在原YOLOv4算法基础上,对多尺度检测进行改进,把浅层特征信息充分利用起来;设计ICvT(improved convolutional vision transform... 针对道路场景中检测小目标时漏检率较高、检测精度低的问题,提出一种引入Transformer的道路小目标检测算法。在原YOLOv4算法基础上,对多尺度检测进行改进,把浅层特征信息充分利用起来;设计ICvT(improved convolutional vision transformer)模块捕获特征内部的相关性,获得上下文信息,提取更加全面丰富的特征;在网络特征融合部分嵌入改进后的空间金字塔池化模块,在保持较小计算量的同时增加特征图的感受野。实验结果表明,在KITTI数据集上,算法检测精度达到91.97%,与YOLOv4算法相比,mAP提高了2.53%,降低了小目标的漏检率。 展开更多
关键词 小目标检测 深度学习 YOLOv4算法 多尺度检测 transformER 空间金字塔池化 特征融合
在线阅读 下载PDF
Anti-aliasing nonstationary signals detecion algorithm based on interpolation in the frequency domain using the short time Fourier transform 被引量:7
10
作者 Bian Hailong Chen Guangju 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期419-426,共8页
To eliminate the aliasing that appeared during the measurement of multi-components nonstationary signals, a novel kind of anti-aliasing algorithm based on the short time Fourier transform (STFT) is brought forward. ... To eliminate the aliasing that appeared during the measurement of multi-components nonstationary signals, a novel kind of anti-aliasing algorithm based on the short time Fourier transform (STFT) is brought forward. First the physical essence of aliasing that occurs is analyzed; second the interpolation algorithm model is setup based on the Hamming window; then the fast implementation of the algorithm using the Newton iteration method is given. Using the numerical simulation the feasibility of algorithm is validated. Finally, the electrical circuit experiment shows the practicality of the algorithm in the electrical engineering. 展开更多
关键词 nonstationary signal INTERPOLATION ANTI-ALIASING short time Fourier transform (STFT) iterative algorithm.
在线阅读 下载PDF
基于INGO-Transformer的模拟电路元件故障预测
11
作者 杜先君 曹磊 《火力与指挥控制》 CSCD 北大核心 2024年第10期158-166,共9页
针对模拟电路元件易受外部环境影响发生故障、故障特征提取困难、无法准确预测及诊断元件故障等问题,基于Transformer模型提出改进INGO-Transformer方法。采用小波包分解(WPD)对原始数据进行特征提取,使用特征向量之间的三角距离来表征... 针对模拟电路元件易受外部环境影响发生故障、故障特征提取困难、无法准确预测及诊断元件故障等问题,基于Transformer模型提出改进INGO-Transformer方法。采用小波包分解(WPD)对原始数据进行特征提取,使用特征向量之间的三角距离来表征模拟电路中元件的退化状态,使用INGO优化Transformer的训练超参数构建预测模型。以Sallen-Key带通滤波电路与镜像电流源电路为预测实验对象进行故障预测实验,采用MAE与MSE作为故障预测模型评价指标,两组实验电路10次实验平均MAE、MSE结果分别为4.2162e-04、4.1906e-07和0.0017、1.9625e-05。仿真结果表明,所提方法在模拟电路单一元件故障预测中具有较高的准确性与较强的泛化能力。 展开更多
关键词 模拟电路 故障预测 小波包分解 transformER 优化算法
在线阅读 下载PDF
Spectral matching algorithm based on nonsubsampled contourlet transform and scale-invariant feature transform 被引量:4
12
作者 Dong Liang Pu Yan +2 位作者 Ming Zhu Yizheng Fan Kui Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期453-459,共7页
A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low freq... A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy. 展开更多
关键词 point pattern matching nonsubsampled contourlet transform scale-invariant feature transform spectral algorithm.
在线阅读 下载PDF
基于IWOA-Transformer的磨煤机故障预警
13
作者 罗毅 段明达 《动力工程学报》 CAS CSCD 北大核心 2024年第6期939-946,共8页
提出了一种基于改进鲸鱼算法优化Transformer网络超参数(IWOA-Transformer)的故障预警方法。该方法利用非线性收敛系数和高斯变异对鲸鱼算法(WOA)进行改进,以提高WOA的收敛速度和避免其陷入局部最优;再采用改进鲸鱼算法(IWOA)优化Transf... 提出了一种基于改进鲸鱼算法优化Transformer网络超参数(IWOA-Transformer)的故障预警方法。该方法利用非线性收敛系数和高斯变异对鲸鱼算法(WOA)进行改进,以提高WOA的收敛速度和避免其陷入局部最优;再采用改进鲸鱼算法(IWOA)优化Transformer的超参数,建立磨煤机故障预警模型;然后,通过预测值和实际值的相似度函数确定自适应阈值,结合专家系统判断故障类型并提出解决方案,实现磨煤机故障预警;最后,以某350 MW热电机组中速磨煤机为例进行故障预警试验。结果表明:所提IWOA-Transformer模型可显著提高预警速度和准确率,具有工程实用价值。 展开更多
关键词 transformer神经网络 鲸鱼优化算法 磨煤机 故障预警 专家系统
在线阅读 下载PDF
An Algorithm for Ship Wake Detection from the SAR Images Using the Radon Transform and Morphological Image Processing 被引量:2
14
作者 金亚秋 王世庆 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第4期7-12,共6页
Using the Radon transform and morphological image processing, an algorithm for ship's wake detection in the SAR (synthetic aperture radar) image is developed. Being manipulated in the Radon space to invert the gra... Using the Radon transform and morphological image processing, an algorithm for ship's wake detection in the SAR (synthetic aperture radar) image is developed. Being manipulated in the Radon space to invert the gray-level and binary images, the linear texture of ship wake in oceanic clutter can be well detected. It has been applied to the automatic detection of a moving ship from the SEASAT SAR image. The results show that this algorithm is well robust in a strong noisy background and is not very sensitive to the threshold parameter and the working window size. 展开更多
关键词 algorithmS Image processing Mathematical transformations Radar clutter Radar target recognition Spurious signal noise Synthetic aperture radar
在线阅读 下载PDF
基于改进YOLOv5s的CNN-Swin Transformer森林野生动物图像目标检测算法 被引量:1
15
作者 杨文翰 刘天宇 +2 位作者 周俊池 胡文武 蒋蘋 《林业科学》 EI CAS CSCD 北大核心 2024年第3期121-130,共10页
【目的】为提高野生动物在复杂森林环境中的检测精度,促进森林野生动物保护技术发展,提出一种基于YOLOv5s网络模型、针对陷阱相机所摄取森林野生动物图像的改进检测算法。【方法】以包含湖南壶瓶山国家级自然保护区几种典型森林野生动... 【目的】为提高野生动物在复杂森林环境中的检测精度,促进森林野生动物保护技术发展,提出一种基于YOLOv5s网络模型、针对陷阱相机所摄取森林野生动物图像的改进检测算法。【方法】以包含湖南壶瓶山国家级自然保护区几种典型森林野生动物在内的数据集为研究对象,首先,对真实标注框图像进行裁剪、归一化和缩放处理,随机将2~4张裁剪图像拼贴组成新的数据集元素,以丰富和增强数据集图像信息;其次,使用一种基于通道注意力思想的加权通道拼接方法,在通道拼接时引入权重改变通道数量,通过反向传播训练方法不断更新权重以增加重要特征信息的通道层数;接着,引入Swin Transformer模块与CNN网络相结合,为卷积神经网络特征提取加入自注意力机制,融合2种网络特征提取层的优势,提高特征提取的感受野;最后,选择更优的α-DIoU损失函数替代GIoU损失函数,针对边界框重叠面积和中心点距离造成的损失,引入新的几何因素惩罚项。【结果】在相同试验条件和数据集下,相比原YOLOv5s网络模型,改进算法极大提高检测的平均准确率和平均回归率,均值平均精度由74.1%提升至88.4%,获得14.3%的精度提升,同时也超过YOLOv3、YOLOXs、RetinaNet、Faster R-CNN等其他流行目标检测算法。【结论】针对陷阱相机所摄取森林野生动物图像背景与目标对比度低、遮挡重叠严重,致使检测误检率、漏检率高等问题,在检测算法中提出一系列改进措施,为我国森林野生动物的保护和数据获取提供一种新的可行性方案和思路。 展开更多
关键词 森林野生动物 检测算法 YOLOv5s Swin transformer 网络融合
在线阅读 下载PDF
基于TF-IDF和多头注意力Transformer模型的文本情感分析 被引量:14
16
作者 高佳希 黄海燕 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期129-136,共8页
文本情感分析旨在对带有情感色彩的主观性文本进行分析、处理、归纳和推理,是自然语言处理中一项重要任务。针对现有的计算方法不能充分处理复杂度和混淆度较高的文本数据集的问题,提出了一种基于TF-IDF(Term Frequency-Inverse Documen... 文本情感分析旨在对带有情感色彩的主观性文本进行分析、处理、归纳和推理,是自然语言处理中一项重要任务。针对现有的计算方法不能充分处理复杂度和混淆度较高的文本数据集的问题,提出了一种基于TF-IDF(Term Frequency-Inverse Document Frequency)和多头注意力Transformer模型的文本情感分析模型。在文本预处理阶段,利用TF-IDF算法对影响文本情感倾向较大的词语进行初步筛选,舍去常见的停用词及其他文本所属邻域对文本情感倾向影响较小的专有名词。然后,利用多头注意力Transformer模型编码器进行特征提取,抓取文本内部重要的语义信息,提高模型对语义的分析和泛化能力。该模型在多领域、多类型评论语料库数据集上取得了98.17%的准确率。 展开更多
关键词 文本情感分析 自然语言处理 多头注意力机制 TF-IDF算法 transformer模型
在线阅读 下载PDF
Fast Algorithm for Nonsubsampled Contourlet Transform 被引量:5
17
作者 Chun-Man YAN Bao-Long GUO Meng YI 《自动化学报》 EI CSCD 北大核心 2014年第4期757-762,共6页
多尺度的几何分析(MGA ) 为图象处理作为有效策略被认出了。作为 MGA 的分离工具之一, nonsubsampled contourlet 变换(NSCT ) 广泛地被使用了图象降噪,图象熔化,图象改进,特征抽取等等。然而,处理表演由于它的高冗余性被限制,并... 多尺度的几何分析(MGA ) 为图象处理作为有效策略被认出了。作为 MGA 的分离工具之一, nonsubsampled contourlet 变换(NSCT ) 广泛地被使用了图象降噪,图象熔化,图象改进,特征抽取等等。然而,处理表演由于它的高冗余性被限制,并且导致集中的计算效率。因此,它的快算法在实践被需要。在这份报纸,我们采用一个优化方向性的过滤器银行(DFB ) 并且把它嵌进 NSCT 当使重建的表演的损失细微时,显著地加速计算速度。试验性的结果证明重建的图象质量能满足人的视觉系统。而且,改进 NSCT 有速度关于若干次比传统的的。图象降噪上的试验性的结果也验证建议方法的可行性和效率。 展开更多
关键词 CONTOURLET变换 快速算法 抽样 多尺度几何分析 图像处理 图像去噪 运算速度 图像融合
在线阅读 下载PDF
An Orthogonal Wavelet Transform Fractionally Spaced Blind Equalization Algorithm Based on the Optimization of Genetic Algorithm
18
作者 廖娟 郭业才 季童莹 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第2期65-71,共7页
An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square er... An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square error and local convergence of traditional constant modulus blind equalization algorithm(CMA).The proposed algorithm can reduce the signal autocorrelation through the orthogonal wavelet transform of input signal of fractionally spaced blind equalizer,and decrease the possibility of CMA local convergence by using the global random search characteristics of genetic algorithm to optimize the equalizer weight vector.The proposed algorithm has the faster convergence rate and smaller mean square error compared with FSE and WT-FSE.The efficiency of the proposed algorithm is proved by computer simulation of underwater acoustic channels. 展开更多
关键词 information processing technique genetic algorithm orthogonal wavelet transform fractionally spaced equalizer blind equalization underwater acoustic channel
在线阅读 下载PDF
基于Swin Transformer的双流遥感图像时空融合超分辨率重建 被引量:1
19
作者 王志浩 钱沄涛 《计算机工程》 CAS CSCD 北大核心 2024年第9期33-45,共13页
遥感图像时空融合超分辨重建从高时序密度的低分辨率图像和低时序密度的高分辨率图像中提取信息,生成同时具有高时序密度的高分辨率遥感图像,它直接关系到后续的解译、检测、跟踪等任务的实施。随着卷积神经网络(CNN)的快速发展,研究者... 遥感图像时空融合超分辨重建从高时序密度的低分辨率图像和低时序密度的高分辨率图像中提取信息,生成同时具有高时序密度的高分辨率遥感图像,它直接关系到后续的解译、检测、跟踪等任务的实施。随着卷积神经网络(CNN)的快速发展,研究者们提出了一系列基于CNN的时空融合方法,然而由于卷积的局限性,这些方法在全局信息提取方面仍然存在不足。受Swin Transformer全局能力的启发,提出一种基于Swin Transformer的超分辨重建模型。在特征提取阶段,引入双流结构,将特征提取网络分为两个部分,分别提取时间信息与空间信息,并通过Swin Transformer的全局能力提升模型性能。在特征融合阶段,引入结合通道注意力与空间注意力的卷积块注意力模块(CBAM),用于增强重要特征,提升图像重建精度。在Coleambally灌溉区(CIA)与Gwydir下游流域(LGC)数据集上将该模型与多种时空融合超分辨率重建模型进行对比实验,结果表明该模型在各项评价指标上均取得了最优的结果,具有更出色的性能和更强的泛化能力。 展开更多
关键词 时空融合 超分辨率重建 Swin transformer算法 双流结构 卷积神经网络
在线阅读 下载PDF
基于Transformer的深度条件视频压缩 被引量:2
20
作者 鲁国 钟天雄 耿晶 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期442-448,共7页
近年来,基于深度学习的视频压缩技术主要基于卷积神经网络(CNN)且采用运动补偿-残差编码的架构,由于常见的CNN只能利用局部的相关性,以及预测残差本身的稀疏特性,难以取得最优压缩性能。因此,提出一种基于Transformer架构的条件视频压... 近年来,基于深度学习的视频压缩技术主要基于卷积神经网络(CNN)且采用运动补偿-残差编码的架构,由于常见的CNN只能利用局部的相关性,以及预测残差本身的稀疏特性,难以取得最优压缩性能。因此,提出一种基于Transformer架构的条件视频压缩算法,以实现更优的压缩效果。所提算法基于前后帧之间的运动信息,利用可形变卷积得到对应的预测帧特征;将预测帧特征作为条件信息,对原始输入帧特征进行条件编码,避免了直接编码稀疏的残差信号;利用特征间的非局部相关性,提出一个基于Transformer的深度条件视频压缩编码算法,用来实现运动信息编码和条件编码,进一步提升压缩编码的性能。实验结果表明:所提算法在HEVC、UVG数据集上均超越了当前主流的基于深度学习的视频压缩算法。 展开更多
关键词 视频压缩 transformER 深度学习 神经网络 压缩算法
在线阅读 下载PDF
上一页 1 2 167 下一页 到第
使用帮助 返回顶部