In this paper the nonlinear heat-conduction equations rhoc partial derivativew/partial derivativet = partial derivative/partial derivativex (k partial derivativew/partial derivativex) with Dirichlet boundary condition...In this paper the nonlinear heat-conduction equations rhoc partial derivativew/partial derivativet = partial derivative/partial derivativex (k partial derivativew/partial derivativex) with Dirichlet boundary condition and the nonlinear boundary condition are studied. The asymptotic behavior of the global of solution are analyzed by using Lyapuunov function. As its application, the approximate solutions are constructed.展开更多
To better describe the phenomenon of non-Fourier heat conduction, the fractional Cattaneo heat equation is introduced from the generalized Cattaneo model with two fractional derivatives of different orders. The anomal...To better describe the phenomenon of non-Fourier heat conduction, the fractional Cattaneo heat equation is introduced from the generalized Cattaneo model with two fractional derivatives of different orders. The anomalous heat conduction under the Neumann boundary condition in a semi-infinity medium is investigated. Exact solutions are obtained in series form of the H-function by using the Laplace transform method. Finally, numerical examples are presented graphically when different kinds of surface temperature gradient are given. The effects of fractional parameters are also discussed.展开更多
We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the lo...We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the local strong solutions in terms of the gradient of the velocity only, which coincides with the famous Beale-Kato-Majda criterion for ideal incompressible flows.展开更多
针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根...针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根据模型中的边界条件和初始条件设计COB-LED常温点亮实验,并基于ANSYS有限元分析软件进行仿真分析。通过比较求解结果、仿真结果和实验结果验证该数学模型的合理性。结果表明,求解结果与实验结果中最高温度相对误差约23.57%,且两者的温度变化趋势一致。求解结果与仿真结果中最高温度相对误差约34.84%,且温度分布较为接近,证明了该数学模型的合理性与正确性。展开更多
文摘In this paper the nonlinear heat-conduction equations rhoc partial derivativew/partial derivativet = partial derivative/partial derivativex (k partial derivativew/partial derivativex) with Dirichlet boundary condition and the nonlinear boundary condition are studied. The asymptotic behavior of the global of solution are analyzed by using Lyapuunov function. As its application, the approximate solutions are constructed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11102102, 11072134, and 91130017)the Natural Science Foundation of Shandong Province, China (Grant No. ZR2009AQ014)the Independent Innovation Foundation of Shandong University, China (Grant No. 2010ZRJQ002)
文摘To better describe the phenomenon of non-Fourier heat conduction, the fractional Cattaneo heat equation is introduced from the generalized Cattaneo model with two fractional derivatives of different orders. The anomalous heat conduction under the Neumann boundary condition in a semi-infinity medium is investigated. Exact solutions are obtained in series form of the H-function by using the Laplace transform method. Finally, numerical examples are presented graphically when different kinds of surface temperature gradient are given. The effects of fractional parameters are also discussed.
基金supported by the China Postdoctoral Science Foundation (20090450333)supported by the National Basic Research Program (2005CB321700)NSFC (40890154)
文摘We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the local strong solutions in terms of the gradient of the velocity only, which coincides with the famous Beale-Kato-Majda criterion for ideal incompressible flows.
文摘针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根据模型中的边界条件和初始条件设计COB-LED常温点亮实验,并基于ANSYS有限元分析软件进行仿真分析。通过比较求解结果、仿真结果和实验结果验证该数学模型的合理性。结果表明,求解结果与实验结果中最高温度相对误差约23.57%,且两者的温度变化趋势一致。求解结果与仿真结果中最高温度相对误差约34.84%,且温度分布较为接近,证明了该数学模型的合理性与正确性。