期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Improved genetic algorithm for nonlinear programming problems 被引量:8
1
作者 Kezong Tang Jingyu Yang +1 位作者 Haiyan Chen Shang Gao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期540-546,共7页
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w... An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms. 展开更多
关键词 genetic algorithm(GA) nonlinear programming problem constraint handling non-dominated solution optimization problem.
在线阅读 下载PDF
Satellite constellation design with genetic algorithms based on system performance
2
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) Pareto optimal set satellite constellation design surveillance performance
在线阅读 下载PDF
直纹曲面喷漆机器人喷枪轨迹多目标优化 被引量:12
3
作者 马淑梅 谢涛 +1 位作者 李爱平 杨连生 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第3期359-367,共9页
针对直纹曲面上喷漆机器人的喷枪轨迹多目标优化问题,通过平面喷漆实验,采集各点膜厚数据,运用MATLAB遗传算法工具箱拟合β分布,建立直纹曲面漆膜厚度生长模型.将曲面离散为点集,采用三次B样条曲线拟合生成初始喷枪轨迹.以曲面上各点漆... 针对直纹曲面上喷漆机器人的喷枪轨迹多目标优化问题,通过平面喷漆实验,采集各点膜厚数据,运用MATLAB遗传算法工具箱拟合β分布,建立直纹曲面漆膜厚度生长模型.将曲面离散为点集,采用三次B样条曲线拟合生成初始喷枪轨迹.以曲面上各点漆膜厚度均匀和喷涂效率高为目标建立喷枪轨迹多目标优化模型,并采用改进的快速非支配排序遗传算法对该模型求解,获得喷枪轨迹最优解集,最终实现了直纹曲面喷枪轨迹的优化目标.通过实例结果对比验证了该方法的有效性和实用性. 展开更多
关键词 多目标优化 喷漆机器人 直纹曲面 快速非支配排序遗传算法
在线阅读 下载PDF
独立型微电网多目标优化配置 被引量:7
4
作者 张有兵 包侃侃 +3 位作者 杨晓东 任帅杰 戚军 谢路耀 《浙江工业大学学报》 CAS 北大核心 2016年第6期619-623,共5页
独立型微电网作为海岛和偏远地区用电问题的有效方案得到广泛关注,而微电网优化配置是微电网规划设计阶段需要解决的首要问题.将微电网等年值成本作为经济性指标以及新能源渗透率作为环保性指标,以供电经济性和环保性为优化目标,建立含... 独立型微电网作为海岛和偏远地区用电问题的有效方案得到广泛关注,而微电网优化配置是微电网规划设计阶段需要解决的首要问题.将微电网等年值成本作为经济性指标以及新能源渗透率作为环保性指标,以供电经济性和环保性为优化目标,建立含风力、光伏、柴发和储能的独立型微电网多目标优化配置模型.分别采用非劣排序遗传算法(NSGA-II)和最大模糊满意度法进行多目标求解,寻求微电网分布式电源容量最优配置.算例表明多目标遗传算法可求得Pareto解集,而最大模糊满意度法通过模糊转化求得唯一最优解,证明所提方法有效,为独立型微电网优化设计提供必要的依据. 展开更多
关键词 独立型微电网 多目标优化配置 改进型非劣排序遗传算法 最大模糊满意度法
在线阅读 下载PDF
震后应急物资供应点的多目标动态定位-分配模型 被引量:13
5
作者 李志 焦琴琴 周愉峰 《计算机工程》 CAS CSCD 北大核心 2017年第6期281-288,共8页
为提高救灾效率,需要研究震后应急物资供应点的定位-分配问题。因此,以需求效用最大化和物资分配公平性为目标,基于混合整数规划方法建立震后应急物资供应点多目标定位-分配模型。根据所建模型的特点,设计基于矩阵编码与小生境技术的非... 为提高救灾效率,需要研究震后应急物资供应点的定位-分配问题。因此,以需求效用最大化和物资分配公平性为目标,基于混合整数规划方法建立震后应急物资供应点多目标定位-分配模型。根据所建模型的特点,设计基于矩阵编码与小生境技术的非支配排序多目标遗传算法,对定位-分配问题进行求解。算例结果表明,该算法能够有效获得Pareto前沿,决策者可根据偏好与实际需要权衡多个目标,在Pareto前沿面上选择合适的决策方案。 展开更多
关键词 地震灾害 应急物流 定位-分配问题 非支配排序遗传算法 设施选址问题
在线阅读 下载PDF
考虑交货期的双资源柔性作业车间节能调度 被引量:9
6
作者 张洪亮 徐静茹 +1 位作者 谈波 徐公杰 《系统仿真学报》 CAS CSCD 北大核心 2023年第4期734-746,共13页
为解决含有机器和工人双资源约束的柔性作业车间节能调度问题,在考虑交货期的基础上,建立了以总提前和拖期惩罚值及总能耗最小为目标的双资源柔性作业车间节能调度模型。提出了一种改进的非支配排序遗传算法(improved non-dominated sor... 为解决含有机器和工人双资源约束的柔性作业车间节能调度问题,在考虑交货期的基础上,建立了以总提前和拖期惩罚值及总能耗最小为目标的双资源柔性作业车间节能调度模型。提出了一种改进的非支配排序遗传算法(improved non-dominated sorting genetic algorithmⅡ,INSGA-Ⅱ)进行求解。针对所优化的目标,设计了一种三阶段解码方法以获得高质量的可行解;利用动态自适应交叉和变异算子以获得更多优良个体;改进拥挤距离以获得收敛性和分布性更优的种群。将INSGA-Ⅱ与多种多目标优化算法进行对比分析,实验结果表明所提算法可行且有效。 展开更多
关键词 双资源约束 柔性作业车间 提前/拖期惩罚 能耗 INSGA-Ⅱ(improved non-dominated sorting genetic algorithmⅡ)
在线阅读 下载PDF
基于混合遗传蚁群算法的多目标FJSP问题研究 被引量:5
7
作者 赵小惠 卫艳芳 +3 位作者 赵雯 胡胜 王凯峰 倪奕棋 《组合机床与自动化加工技术》 北大核心 2023年第1期188-192,共5页
针对多目标柔性作业车间调度问题求解过程中未综合考虑解集多样性与求解效率的问题,提出了一种混合遗传蚁群算法来求解。首先,通过改进的NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)获取问题的较优解,以此来确定蚁群算法的初... 针对多目标柔性作业车间调度问题求解过程中未综合考虑解集多样性与求解效率的问题,提出了一种混合遗传蚁群算法来求解。首先,通过改进的NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)获取问题的较优解,以此来确定蚁群算法的初始信息素分布;其次,根据提出的自适应伪随机比例规则和改进的信息素更新规则来优化蚂蚁的遍历过程;最后,通过邻域搜索,扩大蚂蚁的搜索空间,从而提高解集的多样性。通过Kacem和BRdata算例进行实验验证,证明混合遗传蚁群算法具有更高的求解效率和更好解集多样性。 展开更多
关键词 柔性作业车间调度 多目标优化 NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ) 蚁群算法
在线阅读 下载PDF
高层数控裁床支撑梁多目标集成优化技术
8
作者 赵燕伟 杨帆 +2 位作者 桂方志 黄能壮 盛猛 《计算机集成制造系统》 EI CSCD 北大核心 2017年第10期2164-2171,共8页
为降低高层数控裁床的支撑梁质量和运动惯量,提高其结构刚度,提出一种多种工程分析手段为一体的集成式优化设计方法,即结构建模、系统仿真、面向应模型与多目标优化相结合的优化策略。利用正交试验对支撑梁做面响应分析,从而获取近似模... 为降低高层数控裁床的支撑梁质量和运动惯量,提高其结构刚度,提出一种多种工程分析手段为一体的集成式优化设计方法,即结构建模、系统仿真、面向应模型与多目标优化相结合的优化策略。利用正交试验对支撑梁做面响应分析,从而获取近似模型。进一步采用NSGA-Ⅱ算法进行多目标寻优搜索生成Pareto最优解集。计算结果表明,该方法不但可以有效地寻找到在支撑梁质量和结构刚度上都有很大改善的方案,并且对提高布料裁床动态性能、降低能耗也具有很好的工程应用价值。 展开更多
关键词 支撑梁结构设计 多目标优化集成 面响应模型 改进的非支配排序遗传算法
在线阅读 下载PDF
NSGA Ⅱ based multi-objective homing trajectory planning of parafoil system 被引量:1
9
作者 陶金 孙青林 +1 位作者 陈增强 贺应平 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3248-3255,共8页
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki... Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system. 展开更多
关键词 parafoil system homing trajectory planning multi-objective optimization non-dominated sorting genetic algorithm(NSGA) non-uniform b-spline
在线阅读 下载PDF
Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ 被引量:6
10
作者 Abolfazl Khalkhali 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期121-133,共13页
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo... In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method. 展开更多
关键词 automotive S-rail crashworthiness technique for ordering preferences by similarity to ideal solution(TOPSIS) method group method of data handling(GMDH) algorithm multi-objective optimization modified non-dominated sorting genetic algorithm(NSGA II) Pareto front
在线阅读 下载PDF
Multi-objective Function Optimization for Environmental Control of a Greenhouse Based on a RBF and NSGA-Ⅱ
11
作者 Zhou Xiu-li Liu Ming-wei +3 位作者 Wang Ling Xu Xiao-chuan Chen Gang Wang De-fu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第1期75-89,共15页
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve... To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively. 展开更多
关键词 greenhouse temperature multi-objective optimization radial-basis function(RBF) non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ)
在线阅读 下载PDF
Orbit Design for Responsive Space Using Multiple-objective Evolutionary Computation
12
作者 FU Xiaofeng WU Meiping ZHANG Jing 《空间科学学报》 CAS CSCD 北大核心 2012年第2期238-244,共7页
Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A... Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A special multiple-objective genetic algorithm,namely the Nondominated Sorting Genetic AlgorithmⅡ(NSGAⅡ),is used to design responsive orbits.This algorithm has considered the conflicting metrics of orbits to achieve the optimal solution,including the orbital elements and launch programs of responsive vehicles.Low-Earth fast access orbits and low-Earth repeat coverage orbits,two subtypes of responsive orbits,can be designed using NSGAI under given metric tradeoffs,number of vehicles,and launch mode.By selecting the optimal solution from the obtained Pareto fronts,a designer can process the metric tradeoffs conveniently in orbit design.Recurring to the flexibility of the algorithm,the NSGAI promotes the responsive orbit design further. 展开更多
关键词 Multiple-objective evolutionary computation non-dominated Sorting Genetic algorithmⅡ(NSGAⅡ) Low-Earth Fast Access Orbit(FAO) Low-Earth Repeat Coverage Orbit(RCO) Successive-coverage constellation for responsive deployment
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部