Wireless transmission method in wireless sensor networks has put forward higher requirements for private protection technology. According to the packet loss problem of private protection algorithm based on slice techn...Wireless transmission method in wireless sensor networks has put forward higher requirements for private protection technology. According to the packet loss problem of private protection algorithm based on slice technology, this paper proposes the data private protection algorithm with redundancy mechanism, which ensures privacy by privacy homomorphism mechanism and guarantees redundancy by carrying hidden data. Moreover,it selects the routing tree generated by CTP(Collection Tree Protocol) as routing path for data transmission. By dividing at the source node, it adds the hidden information and also the privacy homomorphism. At the same time,the information feedback tree is established between the destination node and the source node. In addition, the destination node immediately sends the packet loss information and the encryption key via the information feedback tree to the source node. As a result,it improves the reliability and privacy of data transmission and ensures the data redundancy.展开更多
Multiplexing technologies based on superconducting quantum interference devices(SQUIDs) are crucial to cryogenic readout of superconducting transition-edge sensor(TES) arrays. Demands for large-scale TES arrays promot...Multiplexing technologies based on superconducting quantum interference devices(SQUIDs) are crucial to cryogenic readout of superconducting transition-edge sensor(TES) arrays. Demands for large-scale TES arrays promote the development of multiplexing technologies towards large multiplexing factors and low readout noise. The development of multiplexing technologies also facilitates new applications of TES arrays in a wide range of frequencies. Here we summarize different types of SQUID-based multiplexing technologies including time-division multiplexing, code-division multiplexing, frequency-division multiplexing and microwave SQUID multiplexing. The advances and parameter constraints of each multiplexing technology are also discussed.展开更多
This paper introduces the architecture of wireless sensor networks, presents a cross-layer network management and control mechanism. The key technologies, such as Medium Access Control (MAC) and wireless routing proto...This paper introduces the architecture of wireless sensor networks, presents a cross-layer network management and control mechanism. The key technologies, such as Medium Access Control (MAC) and wireless routing protocols are discussed and compared. A proposal of applying the simple IEEE 802 MAC protocol into the wireless sensor network is introduced. In addition, in order to improve the system capacity, a multi-channel strategy for the sensor nodes is presented for decreasing the blocking probability and suppressing the accessing time delay. It is concluded that there are still a number of problems to be solved, including decreasing power consumption, improving capacity and avoiding access collision, to promote the successful commercial application of wireless sensor network.展开更多
基金sponsored by the National Key R&D Program of China(No.2018YFB1003201)the National Natural Science Foundation of China(No.61672296,No.61602261)Major Natural Science Research Projects in Colleges and Universities of Jiangsu Province(No.18KJA520008)
文摘Wireless transmission method in wireless sensor networks has put forward higher requirements for private protection technology. According to the packet loss problem of private protection algorithm based on slice technology, this paper proposes the data private protection algorithm with redundancy mechanism, which ensures privacy by privacy homomorphism mechanism and guarantees redundancy by carrying hidden data. Moreover,it selects the routing tree generated by CTP(Collection Tree Protocol) as routing path for data transmission. By dividing at the source node, it adds the hidden information and also the privacy homomorphism. At the same time,the information feedback tree is established between the destination node and the source node. In addition, the destination node immediately sends the packet loss information and the encryption key via the information feedback tree to the source node. As a result,it improves the reliability and privacy of data transmission and ensures the data redundancy.
基金Project supported by the National Science Foundation of China (Grant Nos. 11653001 and 11653004)。
文摘Multiplexing technologies based on superconducting quantum interference devices(SQUIDs) are crucial to cryogenic readout of superconducting transition-edge sensor(TES) arrays. Demands for large-scale TES arrays promote the development of multiplexing technologies towards large multiplexing factors and low readout noise. The development of multiplexing technologies also facilitates new applications of TES arrays in a wide range of frequencies. Here we summarize different types of SQUID-based multiplexing technologies including time-division multiplexing, code-division multiplexing, frequency-division multiplexing and microwave SQUID multiplexing. The advances and parameter constraints of each multiplexing technology are also discussed.
文摘This paper introduces the architecture of wireless sensor networks, presents a cross-layer network management and control mechanism. The key technologies, such as Medium Access Control (MAC) and wireless routing protocols are discussed and compared. A proposal of applying the simple IEEE 802 MAC protocol into the wireless sensor network is introduced. In addition, in order to improve the system capacity, a multi-channel strategy for the sensor nodes is presented for decreasing the blocking probability and suppressing the accessing time delay. It is concluded that there are still a number of problems to be solved, including decreasing power consumption, improving capacity and avoiding access collision, to promote the successful commercial application of wireless sensor network.