The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detecti...The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detection scheme for the satellite-based AIS signal transmitted over the white Gaussian noise channel. Based on the maximum likelihood estimation and a Viterbi decoder, the proposed scheme is capable of tolerating a frequency offset up to 5% of the symbol rate. The complexity of the proposed scheme is reduced by the state-complexity reduction, which is based on per-survivor processing. Simulation results prove that the proposed non-coherent sequence detection scheme has high robustness to frequency offset compared to the relative scheme when messages collision exists.展开更多
针对现有入侵检测技术的不足,文章研究了基于机器学习的异常入侵检测系统,将多标记和半监督学习应用于入侵检测,提出了一种基于多标记学习的入侵检测算法。该算法采用"k近邻"分类准则,统计近邻样本的类别标记信息,通过最大化...针对现有入侵检测技术的不足,文章研究了基于机器学习的异常入侵检测系统,将多标记和半监督学习应用于入侵检测,提出了一种基于多标记学习的入侵检测算法。该算法采用"k近邻"分类准则,统计近邻样本的类别标记信息,通过最大化后验概率(maximum a posteriori,MAP)的方式推理未标记数据的所属集合。在KDD CUP99数据集上的仿真结果表明,该算法能有效地改善入侵检测系统的性能。展开更多
文摘The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detection scheme for the satellite-based AIS signal transmitted over the white Gaussian noise channel. Based on the maximum likelihood estimation and a Viterbi decoder, the proposed scheme is capable of tolerating a frequency offset up to 5% of the symbol rate. The complexity of the proposed scheme is reduced by the state-complexity reduction, which is based on per-survivor processing. Simulation results prove that the proposed non-coherent sequence detection scheme has high robustness to frequency offset compared to the relative scheme when messages collision exists.
文摘针对现有入侵检测技术的不足,文章研究了基于机器学习的异常入侵检测系统,将多标记和半监督学习应用于入侵检测,提出了一种基于多标记学习的入侵检测算法。该算法采用"k近邻"分类准则,统计近邻样本的类别标记信息,通过最大化后验概率(maximum a posteriori,MAP)的方式推理未标记数据的所属集合。在KDD CUP99数据集上的仿真结果表明,该算法能有效地改善入侵检测系统的性能。