Objective Cytokine responses to activation of innate immunity differ between individuals,yet the genomic and tissue-specific transcriptomic determinants of inflammatory responsiveness are not well understood. We hypot...Objective Cytokine responses to activation of innate immunity differ between individuals,yet the genomic and tissue-specific transcriptomic determinants of inflammatory responsiveness are not well understood. We hypothesized that tissue-specific mRNA and long intergenic non-coding RNA (lincRNA) induction differs between individuals with divergent evoked inflammatory responses.展开更多
Vascular remodeling is the essential pathogenic process of various cardiovascular disorders,including hypertension,atherosclerosis,stroke,and restenosis after vein graft.The main characterization of vascular remodelin...Vascular remodeling is the essential pathogenic process of various cardiovascular disorders,including hypertension,atherosclerosis,stroke,and restenosis after vein graft.The main characterization of vascular remodeling is abnormal variations of vascular cell phenotype,morphological structure and functions such as migration,hypertrophy,proliferation and apoptosis.Numerous researches revealed that mechanical stress,including shear stress and cyclic stretch,participates in physiological vascular homeostasis,or pathophysiological vascular remodeling.The understanding of mechanobiological mechanism in vascular remodeling will play a unique role in understanding human physiology and disease,and will generate important theoretical and clinical significance [2].Non-coding RNAs are newly recognized RNAs which cannot be translated into proteins but are involved in epigenetic modification of gene regulation.The studies revealed that non-coding RNAs,such as microRNAs(miRNAs)and long noncoding RNAs(long ncRNAs,IncRNA),as well as small interfering RNAs(siRNAs),piwi-interacting RNAs(piRNAs),small nucleolar RNAs(snoRNAs),play essential roles in the regulation of various processes,such as metabolism,development,cell proliferation,cell apoptosis,cell differentiation,oncogenesis and vascular homeostasis[5].However,the roles of non-coding RNAs in the cardiovascular system under mechanical stresses are still not clarified.Our recent researches detected the mechanical regulation of IncRNAs and miRNAs in vascular remodeling.LncRNAs are non-protein-coding transcripts that are longer than 200 nucleotides(nt),which is an arbitrary cut-off value that distinguishes these transcripts from other small RNAs.Unlike the well-established mechanism of microRNA action,the functional mode of IncRNAs is not fully understood.Increasing evidence shows that IncRNAs modulate gene expression via a multilevel-regulated pathway.Given their large number and complicated functional modes,lncRNAs are emerging as important regulators of a variety of cellular responses,developmental processes and diseases.Using a gene microarray,we screened the differences in the IncRNAs and mRNAs between spontaneously hypertensive rats(SHR)and Wistar Kyoto rats(WKY).The results showed that 68 IncRNAs and 255 mRNAs were up-regulated in the aorta of SHR,while 167 IncRNAs and 272 mRNAs were down-regulated.Expressions of the screened IncRNAs,including XR007793,were validated by real-time PCR.A co-expression network was composed,and gene function was analysed using Ingenuity Pathway Analysis.In vitro,vascular smooth muscle cells(VSMCs)were subjected to cyclic stretch at a magnitude of 5%(physiological normotensive cyclic stretch)or 15%(pathological hypertensive cyclic stretch)by Flexercell-5000TM.15%-cyclic-stretch increased XR007793 expression.XR007793 knockdown attenuated VSMC proliferation and migration and inhibited co-expressed genes such as signal transducers and activators of transcription 2(stat2),LIM domain only 2(lmo2)and interferon regulatory factor 7(irf7)[4].Illuminating the role of IncRNAs in vascular remodeling induced by hyper mechanical stretch may provide deeper insight into the mechanobiological mechanism underlying hypertension,and contribute to identifying potential targets for hypertension therapy.miRNAs are endogenous,non-coding,single-stranded RNAs of 18-22 nucleotides that constitute a novel class of gene regulators.miRNAs bind to their target genes within their 3’-untranslated regions(3’-UTRs),leading to direct degradation of mRNA or translational repression by a complete,i.e.in plants,or incomplete,i.e.in animals,complement respectively.Our resent works revealed several important mechano-responsive miRNA and their potential effects in vascular remodeling.Forexample,miRNA-33 is regulated by cyclic stretch in the grafted vessels,which targets to BMP3 and subsequent modulates smad signaling pathway.The miRNA-33-BMP3-smad pathway protects against venous VSMC proliferation in response to arterial cyclic stretch.Therefore,miRNA-33 may be a potential therapeutic target in autologous vein grafted surgery,and locally overexpression of miR-33 may attenuates neointimal hyperplasia of grafted human saphenous vein [3].The unpublished data revealed that 15%cyclic stretch also significantly elevated the expression of miRNA-124-3p which bound to the 3’UTR of Lmna mRNA,and then negatively regulated protein expression of lamin A/C which is the important skeletal proteins in nucleus.In addition to primary intracellular locations of miRNAs,our recent study showed that miRNAs can be secreted and protected extracellularly via inclusion into membrane-derived vesicles including microparticles.Microparticles are extracellular vesicles ranging from 0.1 to 1μm in size and have been shown to deliver various bioactive molecules,i.e.,chemokines,enzymes and miRNAs,to recipient cells.Increasing evidence shows that microparticles play a pivotal role in many pathological processes,such as cancer,inflammatory diseases and cardiovascular disease.Our present study showed that platelet-derived microparticles(PMPs),which are released by active platelets,are important vehicles for communication and play crucial roles in inducing abnormal EC proliferation in hypertension.In briefly,EC proliferation was increased in renal hypertensive rats established by abdominal aortic coarctation compared to control rats and that elevated thrombin in plasma promoted platelet activation,which may induce the release of PMPs.miRNA array and qPCR revealed a higher level of miRNA-142-3p in platelets and PMPs.In vitro,PMPs delivered miRNA-142-3p into ECs and enhanced EC proliferation via Bcl-2-associated transcription factor 1(BCLAF1)and its downstream genes.These results indicated that PMPs deliver miRNA-142-3p from activated platelets into ECs and that miRNA-142-3p may play important roles in EC dysfunction under hypertensive conditions and might be a novel therapeutic target for maintaining EC homeostasis in hypertension[1].These results provide possible mechanisms by which non-coding RNAs regulate cellular functions under different mechanical stresses,and suggest a novel potential therapeutic approach for vascular remodeling.The further studies on noncoding RNAs may provide new insight into understanding the mechanism of vascular remodeling in different various cardiovascular disorders,and may provide novel targets for the maintenance of vascular homeostasis.展开更多
Objective:Middle ear cholesteatoma is a non-tumorous condition that typically leads to hearing loss,bone destruction,and other severe complications.Despite surgery being the primary treatment,the recurrence rate remai...Objective:Middle ear cholesteatoma is a non-tumorous condition that typically leads to hearing loss,bone destruction,and other severe complications.Despite surgery being the primary treatment,the recurrence rate remains high.Therefore,exploring the molecular mechanisms underlying cholesteatoma is crucial for discovering new therapeutic approaches.This study aims to explore the involvement of N6-methyladenosine(m^(6)A)methylation in long non-coding RNAs(lncRNAs)in the biological functions and related pathways of middle ear cholesteatoma.Methods:The m^(6)A modification patterns of lncRNA in middle ear cholesteatoma tissues(n=5)and normal post-auricular skin tissues(n=5)were analyzed using an lncRNA m^(6)A transcriptome microarray.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses were conducted to identify potential biological functions and signaling pathways involved in the pathogenesis of middle ear cholesteatoma.Methylated RNA immunoprecipitation(MeRIP)-PCR was used to validate the m^(6)A modifications in cholesteatoma and normal skin tissues.Results:Compared with normal skin tissues,1525 lncRNAs were differentially methylated in middle ear cholesteatoma tissues,with 1048 showing hypermethylation and 477 showing hypomethylation[fold change(FC)≥3 or<1/3,P<0.05].GO enrichment analysis indicated that hypermethylated lncRNAs were involved in protein phosphatase inhibitor activity,neuron-neuron synapse,and regulation ofα-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid(AMPA)receptor activity.Hypomethylated lncRNAs were associated with mRNA methyltransferase activity,secretory granule membrane,and mRNA methylation.KEGG analysis revealed that hypermethylated lncRNAs were mainly associated with 5 pathways:the Hedgehog signaling pathway,viral protein interaction with cytokines and cytokine receptors,mitogen-activated protein kinase(MAPK)signaling pathway,cytokine-cytokine receptor interaction,and adrenergic signaling in cardiomyocytes.Hypomethylated lncRNAs were mainly involved in 4 pathways:Renal cell carcinoma,tumor necrosis factor signaling pathway,transcriptional misregulation in cancer,and cytokine-cytokine receptor interaction.Additionally,MeRIP-PCR confirmed the changes in m^(6)A methylation levels in NR_033339,NR_122111,NR_130744,and NR_026800,consistent with microarray analysis.Real-time PCR also confirmed the significant upregulation of MAPK1 and NF-κB,key genes in the MAPK signaling pathway.Conclusion:This study reveals the m^(6)A modification patterns of lncRNAs in middle ear cholesteatoma,suggests a direction for further research into the role of lncRNA m^(6)A modification in the etiology of cholesteatoma.The findings provide potential therapeutic targets for the treatment of middle ear cholesteatoma.展开更多
OBJECTIVE Cue-induced drug craving progressively increase after prolong abstinence in animal and human beings.A behavioral phenomenon termed incubation of drug craving is considered as a key reason for drug relapse,bu...OBJECTIVE Cue-induced drug craving progressively increase after prolong abstinence in animal and human beings.A behavioral phenomenon termed incubation of drug craving is considered as a key reason for drug relapse,but the transcriptional mechanisms that contribute to this incubation are unknown.It has been demonstrated that circular RNAs(circR NAs),act as miR NA sponges,play important roles in the regulation of gene expression and the pathogenesis of disease.The present study aims to explore the transcriptional profiles associated with incubation of morphine craving in nucleus accumbens(NAc),an important brain area previously implicated in drug seeking.METHODS The animal model of the incubation of drug craving was induced by CPP paradigms with six morphine(5 mg·kg-1) injections and 14 d drug abstinence in mice.The brain tissues of NAc were collected after the behavioral tests for circRNA-sequencing by Illumina Hiseq X sequencer.We identified differentially expressed genes(DEGs) by qRT-PCR and used bioinformatics methods for further function analysis.RESULTS The progressive increase of CPP scores during the 14 d drug abstinence indicated the establishment of animal model.The data of circRNA-sequencing reported that 16 circRNAs were significantly altered after 28 d drug abstinence in NAc of morphine treated mice(FC≥2 and P<0.05).Among those circRNAs,9 were significantly up-regulated,while 7 were down-regulated.Furthermore,we subsequently tested circRNAs expression using quantitative real-time PCR,and the consistent data were obtained.The results of KEGG pathway analysis indicated that these genes were enriched for several biological processes,including RNA transport,protein ubiquitination and histone methylation,etc.CONCLUSION These findings provide a unique resource of gene expression data for future studies examining transcriptional mechanisms in NAc that mediate opioids seeking after prolonged withdrawal.展开更多
OBJECTIVE SNPs in lnc RNAs may alter the expression or secondary structure of lnc RNAs and then impact their functions.Whether lnc RNA SNPs affect the prognosis of acute myeloid leukemia(AML)remains unknown.To search ...OBJECTIVE SNPs in lnc RNAs may alter the expression or secondary structure of lnc RNAs and then impact their functions.Whether lnc RNA SNPs affect the prognosis of acute myeloid leukemia(AML)remains unknown.To search the association between lnc RNA SNPs and AML outcomes,thirty tag SNPs in GAS5,H19,MALAT1,WT1-as and SRA were genotyped in313 AML patients.METHODS Survival analysis was performed in both AML patients recruited presently and GEO samples.The expression of GAS5 and TP63 was analyzed by real-time quantitative PCR.Dual-luciferase reporter gene assay was used to confirm the interactions between GAS5 rs55829688 and TP63.RESULTS Survival analysis indicated that rs55829688(T>C),located in GAS5 promoter,was significantly associated with the prognosis of AML.The average overall survival(OS)for patients with the rs55829688 CC genotype was significantly shorter than those carrying the rs55829688 T allele(P=0.018).Patients with rs55829688 CC genotype showed higher GAS5 expression in PBMCs than carriers of rs55829688T allele(P=0.025).Rs55829688 CC homozygotes also harbored a longer platelets recovery than those with rs55829688 T allele(P=0.040).In vitro study showed that GAS5 promoter harboring the rs55829688 C al ele showed marginal y increased reporter gene activity(P=0.054),and the promoter activity was increased by TP63 in a dose-dependent manner(P=0.001).Moreover,GAS5 expression was associated with AML OS in the GEO GSE12417 dataset,and GAS5 higher expression predict shorter OS(P=0.011).CONCLUSION Rs55829688 polymorphism could increase GAS5 expression by interacting with TP63 and was associated with worse OS in Chinese AML patients.展开更多
文摘Objective Cytokine responses to activation of innate immunity differ between individuals,yet the genomic and tissue-specific transcriptomic determinants of inflammatory responsiveness are not well understood. We hypothesized that tissue-specific mRNA and long intergenic non-coding RNA (lincRNA) induction differs between individuals with divergent evoked inflammatory responses.
基金supported by grants from the National Natural Science Foundation of China ( 11625209,11572199,31670958)
文摘Vascular remodeling is the essential pathogenic process of various cardiovascular disorders,including hypertension,atherosclerosis,stroke,and restenosis after vein graft.The main characterization of vascular remodeling is abnormal variations of vascular cell phenotype,morphological structure and functions such as migration,hypertrophy,proliferation and apoptosis.Numerous researches revealed that mechanical stress,including shear stress and cyclic stretch,participates in physiological vascular homeostasis,or pathophysiological vascular remodeling.The understanding of mechanobiological mechanism in vascular remodeling will play a unique role in understanding human physiology and disease,and will generate important theoretical and clinical significance [2].Non-coding RNAs are newly recognized RNAs which cannot be translated into proteins but are involved in epigenetic modification of gene regulation.The studies revealed that non-coding RNAs,such as microRNAs(miRNAs)and long noncoding RNAs(long ncRNAs,IncRNA),as well as small interfering RNAs(siRNAs),piwi-interacting RNAs(piRNAs),small nucleolar RNAs(snoRNAs),play essential roles in the regulation of various processes,such as metabolism,development,cell proliferation,cell apoptosis,cell differentiation,oncogenesis and vascular homeostasis[5].However,the roles of non-coding RNAs in the cardiovascular system under mechanical stresses are still not clarified.Our recent researches detected the mechanical regulation of IncRNAs and miRNAs in vascular remodeling.LncRNAs are non-protein-coding transcripts that are longer than 200 nucleotides(nt),which is an arbitrary cut-off value that distinguishes these transcripts from other small RNAs.Unlike the well-established mechanism of microRNA action,the functional mode of IncRNAs is not fully understood.Increasing evidence shows that IncRNAs modulate gene expression via a multilevel-regulated pathway.Given their large number and complicated functional modes,lncRNAs are emerging as important regulators of a variety of cellular responses,developmental processes and diseases.Using a gene microarray,we screened the differences in the IncRNAs and mRNAs between spontaneously hypertensive rats(SHR)and Wistar Kyoto rats(WKY).The results showed that 68 IncRNAs and 255 mRNAs were up-regulated in the aorta of SHR,while 167 IncRNAs and 272 mRNAs were down-regulated.Expressions of the screened IncRNAs,including XR007793,were validated by real-time PCR.A co-expression network was composed,and gene function was analysed using Ingenuity Pathway Analysis.In vitro,vascular smooth muscle cells(VSMCs)were subjected to cyclic stretch at a magnitude of 5%(physiological normotensive cyclic stretch)or 15%(pathological hypertensive cyclic stretch)by Flexercell-5000TM.15%-cyclic-stretch increased XR007793 expression.XR007793 knockdown attenuated VSMC proliferation and migration and inhibited co-expressed genes such as signal transducers and activators of transcription 2(stat2),LIM domain only 2(lmo2)and interferon regulatory factor 7(irf7)[4].Illuminating the role of IncRNAs in vascular remodeling induced by hyper mechanical stretch may provide deeper insight into the mechanobiological mechanism underlying hypertension,and contribute to identifying potential targets for hypertension therapy.miRNAs are endogenous,non-coding,single-stranded RNAs of 18-22 nucleotides that constitute a novel class of gene regulators.miRNAs bind to their target genes within their 3’-untranslated regions(3’-UTRs),leading to direct degradation of mRNA or translational repression by a complete,i.e.in plants,or incomplete,i.e.in animals,complement respectively.Our resent works revealed several important mechano-responsive miRNA and their potential effects in vascular remodeling.Forexample,miRNA-33 is regulated by cyclic stretch in the grafted vessels,which targets to BMP3 and subsequent modulates smad signaling pathway.The miRNA-33-BMP3-smad pathway protects against venous VSMC proliferation in response to arterial cyclic stretch.Therefore,miRNA-33 may be a potential therapeutic target in autologous vein grafted surgery,and locally overexpression of miR-33 may attenuates neointimal hyperplasia of grafted human saphenous vein [3].The unpublished data revealed that 15%cyclic stretch also significantly elevated the expression of miRNA-124-3p which bound to the 3’UTR of Lmna mRNA,and then negatively regulated protein expression of lamin A/C which is the important skeletal proteins in nucleus.In addition to primary intracellular locations of miRNAs,our recent study showed that miRNAs can be secreted and protected extracellularly via inclusion into membrane-derived vesicles including microparticles.Microparticles are extracellular vesicles ranging from 0.1 to 1μm in size and have been shown to deliver various bioactive molecules,i.e.,chemokines,enzymes and miRNAs,to recipient cells.Increasing evidence shows that microparticles play a pivotal role in many pathological processes,such as cancer,inflammatory diseases and cardiovascular disease.Our present study showed that platelet-derived microparticles(PMPs),which are released by active platelets,are important vehicles for communication and play crucial roles in inducing abnormal EC proliferation in hypertension.In briefly,EC proliferation was increased in renal hypertensive rats established by abdominal aortic coarctation compared to control rats and that elevated thrombin in plasma promoted platelet activation,which may induce the release of PMPs.miRNA array and qPCR revealed a higher level of miRNA-142-3p in platelets and PMPs.In vitro,PMPs delivered miRNA-142-3p into ECs and enhanced EC proliferation via Bcl-2-associated transcription factor 1(BCLAF1)and its downstream genes.These results indicated that PMPs deliver miRNA-142-3p from activated platelets into ECs and that miRNA-142-3p may play important roles in EC dysfunction under hypertensive conditions and might be a novel therapeutic target for maintaining EC homeostasis in hypertension[1].These results provide possible mechanisms by which non-coding RNAs regulate cellular functions under different mechanical stresses,and suggest a novel potential therapeutic approach for vascular remodeling.The further studies on noncoding RNAs may provide new insight into understanding the mechanism of vascular remodeling in different various cardiovascular disorders,and may provide novel targets for the maintenance of vascular homeostasis.
基金supported by the National Natural Science Foundation(82071036,82000973)the Natural Science Foundation of Hunan Province(2022JJ30821,2019JJ50967)the Special Project for the Construction of Innovative Provinces in Hunan Province(2023SK4030),China。
文摘Objective:Middle ear cholesteatoma is a non-tumorous condition that typically leads to hearing loss,bone destruction,and other severe complications.Despite surgery being the primary treatment,the recurrence rate remains high.Therefore,exploring the molecular mechanisms underlying cholesteatoma is crucial for discovering new therapeutic approaches.This study aims to explore the involvement of N6-methyladenosine(m^(6)A)methylation in long non-coding RNAs(lncRNAs)in the biological functions and related pathways of middle ear cholesteatoma.Methods:The m^(6)A modification patterns of lncRNA in middle ear cholesteatoma tissues(n=5)and normal post-auricular skin tissues(n=5)were analyzed using an lncRNA m^(6)A transcriptome microarray.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses were conducted to identify potential biological functions and signaling pathways involved in the pathogenesis of middle ear cholesteatoma.Methylated RNA immunoprecipitation(MeRIP)-PCR was used to validate the m^(6)A modifications in cholesteatoma and normal skin tissues.Results:Compared with normal skin tissues,1525 lncRNAs were differentially methylated in middle ear cholesteatoma tissues,with 1048 showing hypermethylation and 477 showing hypomethylation[fold change(FC)≥3 or<1/3,P<0.05].GO enrichment analysis indicated that hypermethylated lncRNAs were involved in protein phosphatase inhibitor activity,neuron-neuron synapse,and regulation ofα-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid(AMPA)receptor activity.Hypomethylated lncRNAs were associated with mRNA methyltransferase activity,secretory granule membrane,and mRNA methylation.KEGG analysis revealed that hypermethylated lncRNAs were mainly associated with 5 pathways:the Hedgehog signaling pathway,viral protein interaction with cytokines and cytokine receptors,mitogen-activated protein kinase(MAPK)signaling pathway,cytokine-cytokine receptor interaction,and adrenergic signaling in cardiomyocytes.Hypomethylated lncRNAs were mainly involved in 4 pathways:Renal cell carcinoma,tumor necrosis factor signaling pathway,transcriptional misregulation in cancer,and cytokine-cytokine receptor interaction.Additionally,MeRIP-PCR confirmed the changes in m^(6)A methylation levels in NR_033339,NR_122111,NR_130744,and NR_026800,consistent with microarray analysis.Real-time PCR also confirmed the significant upregulation of MAPK1 and NF-κB,key genes in the MAPK signaling pathway.Conclusion:This study reveals the m^(6)A modification patterns of lncRNAs in middle ear cholesteatoma,suggests a direction for further research into the role of lncRNA m^(6)A modification in the etiology of cholesteatoma.The findings provide potential therapeutic targets for the treatment of middle ear cholesteatoma.
基金Natural Science Foundation of Hebei Province(H2018206166)National Natural Science Foundation of China (81871524).
文摘OBJECTIVE Cue-induced drug craving progressively increase after prolong abstinence in animal and human beings.A behavioral phenomenon termed incubation of drug craving is considered as a key reason for drug relapse,but the transcriptional mechanisms that contribute to this incubation are unknown.It has been demonstrated that circular RNAs(circR NAs),act as miR NA sponges,play important roles in the regulation of gene expression and the pathogenesis of disease.The present study aims to explore the transcriptional profiles associated with incubation of morphine craving in nucleus accumbens(NAc),an important brain area previously implicated in drug seeking.METHODS The animal model of the incubation of drug craving was induced by CPP paradigms with six morphine(5 mg·kg-1) injections and 14 d drug abstinence in mice.The brain tissues of NAc were collected after the behavioral tests for circRNA-sequencing by Illumina Hiseq X sequencer.We identified differentially expressed genes(DEGs) by qRT-PCR and used bioinformatics methods for further function analysis.RESULTS The progressive increase of CPP scores during the 14 d drug abstinence indicated the establishment of animal model.The data of circRNA-sequencing reported that 16 circRNAs were significantly altered after 28 d drug abstinence in NAc of morphine treated mice(FC≥2 and P<0.05).Among those circRNAs,9 were significantly up-regulated,while 7 were down-regulated.Furthermore,we subsequently tested circRNAs expression using quantitative real-time PCR,and the consistent data were obtained.The results of KEGG pathway analysis indicated that these genes were enriched for several biological processes,including RNA transport,protein ubiquitination and histone methylation,etc.CONCLUSION These findings provide a unique resource of gene expression data for future studies examining transcriptional mechanisms in NAc that mediate opioids seeking after prolonged withdrawal.
基金The project supported by National Natural Science Foundation of China(81422052,81403017)Special Topic of the Major Subject of National Science and Technology(2012ZX09509-339107)+1 种基金Hunan Provincial Natural Science Foundation of China(13JJ1010)by Funds for Hunan Education Department Program(12K006)
文摘OBJECTIVE SNPs in lnc RNAs may alter the expression or secondary structure of lnc RNAs and then impact their functions.Whether lnc RNA SNPs affect the prognosis of acute myeloid leukemia(AML)remains unknown.To search the association between lnc RNA SNPs and AML outcomes,thirty tag SNPs in GAS5,H19,MALAT1,WT1-as and SRA were genotyped in313 AML patients.METHODS Survival analysis was performed in both AML patients recruited presently and GEO samples.The expression of GAS5 and TP63 was analyzed by real-time quantitative PCR.Dual-luciferase reporter gene assay was used to confirm the interactions between GAS5 rs55829688 and TP63.RESULTS Survival analysis indicated that rs55829688(T>C),located in GAS5 promoter,was significantly associated with the prognosis of AML.The average overall survival(OS)for patients with the rs55829688 CC genotype was significantly shorter than those carrying the rs55829688 T allele(P=0.018).Patients with rs55829688 CC genotype showed higher GAS5 expression in PBMCs than carriers of rs55829688T allele(P=0.025).Rs55829688 CC homozygotes also harbored a longer platelets recovery than those with rs55829688 T allele(P=0.040).In vitro study showed that GAS5 promoter harboring the rs55829688 C al ele showed marginal y increased reporter gene activity(P=0.054),and the promoter activity was increased by TP63 in a dose-dependent manner(P=0.001).Moreover,GAS5 expression was associated with AML OS in the GEO GSE12417 dataset,and GAS5 higher expression predict shorter OS(P=0.011).CONCLUSION Rs55829688 polymorphism could increase GAS5 expression by interacting with TP63 and was associated with worse OS in Chinese AML patients.