期刊文献+
共找到109篇文章
< 1 2 6 >
每页显示 20 50 100
Nonnegative matrix factorization with Log Gabor wavelets for image representation and classification
1
作者 Zheng Zhonglong Yang Jie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期738-745,共8页
Many problems in image representation and classification involve some form of dimensionality reduction. Nonnegative matrix factorization (NMF) is a recently proposed unsupervised procedure for learning spatially loc... Many problems in image representation and classification involve some form of dimensionality reduction. Nonnegative matrix factorization (NMF) is a recently proposed unsupervised procedure for learning spatially localized, partsbased subspace representation of objects. An improvement of the classical NMF by combining with Log-Gabor wavelets to enhance its part-based learning ability is presented. The new method with principal component analysis (PCA) and locally linear embedding (LIE) proposed recently in Science are compared. Finally, the new method to several real world datasets and achieve good performance in representation and classification is applied. 展开更多
关键词 non-negative matrix factorization (nmf Log Gabor wavelets principal component analysis locally linearembedding (LLE)
在线阅读 下载PDF
基于小波变换和NMF的人脸识别方法的研究 被引量:8
2
作者 张志伟 杨帆 +1 位作者 夏克文 杨瑞霞 《计算机工程》 CAS CSCD 北大核心 2007年第6期176-178,共3页
为了克服PCA、ICA等传统方法在人脸图像特征抽取时存在速度慢、识别率低的缺点,该文提出了一种将非负矩分解思想应用于人脸特征提取的算法。利用小波变换对人脸图像进行分解,对其中包含主要信息的低频子带运用NMF构造特征子空间,在子空... 为了克服PCA、ICA等传统方法在人脸图像特征抽取时存在速度慢、识别率低的缺点,该文提出了一种将非负矩分解思想应用于人脸特征提取的算法。利用小波变换对人脸图像进行分解,对其中包含主要信息的低频子带运用NMF构造特征子空间,在子空间内实现识别。实验结果表明,该方法实用、有效,减少了计算量,提高了系统的识别率,使识别率达到90%以上,有着广泛的研究价值和应用前景。 展开更多
关键词 非负矩阵分解 小波变换 人脸识别 子空间
在线阅读 下载PDF
基于显著性检测与HOG-NMF特征的快速行人检测方法 被引量:40
3
作者 孙锐 陈军 高隽 《电子与信息学报》 EI CSCD 北大核心 2013年第8期1921-1926,共6页
行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用... 行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用频谱调谐显著性检测提取显著图,并基于熵值门限进行感兴趣区域的提取;组合非负矩阵分解和方向梯度直方图生成HOG-NMF特征;采用加性交叉核支持向量机方法(Intersection Kernel Support Vector Machine,IKSVM)。该算法显著降低了特征维数,在相同的计算复杂度下明显改善了线性支持向量机的检测率。在INRIA数据库的实验结果表明,该方法对比HOG/线性SVM和HOG/RBF-SVM显著减少了检测时间,并达到了满意的检测率。 展开更多
关键词 行人检测 显著性检测(SD) 方向梯度直方图(HOG) 非负矩阵分解(nmf 交叉核支持向量机(IKSVM)
在线阅读 下载PDF
基于约束NMF的欠定盲信号分离算法 被引量:12
4
作者 赵知劲 卢宏 尚俊娜 《计算机应用研究》 CSCD 北大核心 2011年第5期1843-1845,共3页
提出一种约束非负矩阵分解方法用于解决欠定盲信号分离问题。非负矩阵分解直接用于求解欠定盲信号分离时,分解结果不唯一,无法正确分离源信号。在基本非负矩阵分解算法基础上,对分解得到的混合矩阵施加行列式约束,保证分解结果的唯一性... 提出一种约束非负矩阵分解方法用于解决欠定盲信号分离问题。非负矩阵分解直接用于求解欠定盲信号分离时,分解结果不唯一,无法正确分离源信号。在基本非负矩阵分解算法基础上,对分解得到的混合矩阵施加行列式约束,保证分解结果的唯一性;对分解得到的源信号同时施加稀疏性约束和最小相关约束,实现混合信号的唯一分解,提高源信号分离性能。仿真实验证明了算法的有效性。 展开更多
关键词 欠定盲分离 非负矩阵分解 行列式准则 稀疏性 最小相关约束
在线阅读 下载PDF
基于行列式和稀疏性约束的NMF的欠定盲分离方法 被引量:10
5
作者 卢宏 赵知劲 杨小牛 《计算机应用》 CSCD 北大核心 2011年第2期553-555,558,共4页
非负矩阵分解(NMF)要求分解得到的左矩阵为列满秩,这限制了它在欠定盲分离(UBSS)中的应用。针对此问题,提出基于带行列式和稀疏性约束的NMF的欠定盲分离算法———DSNMF。该算法在基本NMF的基础上,对NMF得到的左矩阵进行行列式准则约束... 非负矩阵分解(NMF)要求分解得到的左矩阵为列满秩,这限制了它在欠定盲分离(UBSS)中的应用。针对此问题,提出基于带行列式和稀疏性约束的NMF的欠定盲分离算法———DSNMF。该算法在基本NMF的基础上,对NMF得到的左矩阵进行行列式准则约束,对右矩阵进行稀疏性约束,平衡了重构误差、混合矩阵的唯一性以及分离信号的稀疏特性,实现了对混合矩阵和源信号的欠定盲分离。仿真结果表明,在源信号稀疏性较好和较差两种情况下,DSNMF都能取得良好的分离效果。 展开更多
关键词 欠定盲分离 非负矩阵分解 稀疏性 行列式准则
在线阅读 下载PDF
基于NMF图像重构的人脸识别 被引量:5
6
作者 周昌军 张强 魏小鹏 《计算机工程》 CAS CSCD 北大核心 2008年第3期217-219,共3页
由传统的人脸识别方法产生的人脸特征子空间通常是由人脸库中所有训练样本产生的一个通用子空间,该空间更多地包含了所有人脸样本的共性特征,而忽略了个性特征。该文提出一种基于NMF图像重构的方法,以单个人的训练样本集获取其人脸特征... 由传统的人脸识别方法产生的人脸特征子空间通常是由人脸库中所有训练样本产生的一个通用子空间,该空间更多地包含了所有人脸样本的共性特征,而忽略了个性特征。该文提出一种基于NMF图像重构的方法,以单个人的训练样本集获取其人脸特征子空间,将识别图像向每一个特征子空间中进行映射及重构,并以重构图像的误差作为判据实现人脸识别。在ORL标准人脸库进行的计算机仿真证实了该方法的有效性。 展开更多
关键词 非负矩阵分解 人脸识别 重构 特征
在线阅读 下载PDF
基于小波域NMF特征提取的SAR图像目标识别方法 被引量:9
7
作者 宦若虹 杨汝良 《电子与信息学报》 EI CSCD 北大核心 2009年第3期588-591,共4页
该文提出了一种基于小波域非负矩阵分解特征提取的合成孔径雷达图像目标识别方法。该方法对图像二维离散小波分解后提取低频子带图像,用非负矩阵分解对低频子带图像提取特征向量作为目标的特征,利用支持向量机进行分类完成目标识别。将... 该文提出了一种基于小波域非负矩阵分解特征提取的合成孔径雷达图像目标识别方法。该方法对图像二维离散小波分解后提取低频子带图像,用非负矩阵分解对低频子带图像提取特征向量作为目标的特征,利用支持向量机进行分类完成目标识别。将该方法用于对MSTAR数据中三类目标识别,识别率最高可达97.51%,明显提高了目标的正确识别率。实验结果表明,该方法是一种有效的合成孔径雷达图像特征提取与目标识别方法。 展开更多
关键词 合成孔径雷达 特征提取 识别 非负矩阵分解 小波
在线阅读 下载PDF
基于(2D)^2NMF及其改进算法的人脸识别 被引量:7
8
作者 高宏娟 潘晨 《计算机应用》 CSCD 北大核心 2007年第7期1660-1662,1666,共4页
非负矩阵分解(NMF)是基于部分的特征提取方法,能够克服局部遮挡和光照问题,在图像识别任务中效果较好。然而传统算法中,NMF提取的特征是非正交的,且二维图像常被向量化处理,不仅丢失一些结构信息,还导致了数据的高维,不利于提高识别精... 非负矩阵分解(NMF)是基于部分的特征提取方法,能够克服局部遮挡和光照问题,在图像识别任务中效果较好。然而传统算法中,NMF提取的特征是非正交的,且二维图像常被向量化处理,不仅丢失一些结构信息,还导致了数据的高维,不利于提高识别精度和速度。利用图像矩阵取代传统的图像向量表示,提出新的(2D)2NMF方法提取二维图像特征,并通过特征正交化和图像变形等措施,改善了算法性能。人脸识别实验表明,上述措施能够有效提高识别的精度和速度。 展开更多
关键词 人脸识别 非负矩阵分解 二维非负矩阵分解 对角化
在线阅读 下载PDF
基于约束随机分块的NMF图像哈希算法 被引量:6
9
作者 项世军 杨建权 《电子与信息学报》 EI CSCD 北大核心 2011年第2期337-341,共5页
基于非负矩阵分解(Non-negative Matrix Factorization,NMF)的图像哈希(image hashing)算法对图像有损压缩,低通滤波、尺度拉伸等处理具有很好的稳健性,但对图像旋转比较敏感。为此,该文在对NMF哈希算法的分块模式进行深入研究的基础上... 基于非负矩阵分解(Non-negative Matrix Factorization,NMF)的图像哈希(image hashing)算法对图像有损压缩,低通滤波、尺度拉伸等处理具有很好的稳健性,但对图像旋转比较敏感。为此,该文在对NMF哈希算法的分块模式进行深入研究的基础上,提出一种可抗旋转攻击的NMF图像哈希算法。该方法通过对随机分块的区域进行限制,并选择合适的分块尺寸来减轻旋转攻击对图像造成的不良影响,从而提高了特征的旋转稳健性。实验表明,所提出的图像哈希算法在保持原NMF哈希算法对其它攻击稳健性的同时,能有效地抵抗旋转攻击。 展开更多
关键词 图像处理 图像哈希 非负矩阵分解 稳健性 旋转
在线阅读 下载PDF
基于RST-NMF模型的微震信号时频分析和识别 被引量:5
10
作者 张法全 王海飞 +1 位作者 王国富 叶金才 《振动与冲击》 EI CSCD 北大核心 2019年第17期1-7,共7页
针对微震信号难以精确识别的问题,提出一种基于RST-NMF微震信号时频分析和分类方法。首先对微震信号进行S变换得到时频矩阵,然后在频率方向上进行重排,再借助非负矩阵分解技术得到时、频域的分解向量,从中提取宏观、微观统计量构造信号... 针对微震信号难以精确识别的问题,提出一种基于RST-NMF微震信号时频分析和分类方法。首先对微震信号进行S变换得到时频矩阵,然后在频率方向上进行重排,再借助非负矩阵分解技术得到时、频域的分解向量,从中提取宏观、微观统计量构造信号的特征空间,最后采用SVM进行分类。在三道沟井田的试验结果表明,RST时频分析方法对频域分散的能量团有很好的聚集性,时频矩阵经NMF分解最大程度上获取微震信号的局部特征和内在联系,提取分解向量的宏观和微观统计量保证了信号特征空间的完备性,有效地避免了分类时过拟合的发生,分类准确率达到了94%。 展开更多
关键词 微震信号 RST nmf SVM
在线阅读 下载PDF
基于Fisher块对角LNMF的彩色人脸识别 被引量:5
11
作者 王成章 白晓明 《计算机工程》 CAS CSCD 北大核心 2010年第16期24-26,共3页
为提高对彩色人脸的识别率,提出一种基于Fisher块对角局部非负矩阵分解(LNMF)的识别算法。采用块对角矩阵编码彩色图像不同通道的颜色信息,在LNMF算法中增加块对角约束和Fisher判别约束,对不同通道的颜色信息同时进行计算并融入人脸的... 为提高对彩色人脸的识别率,提出一种基于Fisher块对角局部非负矩阵分解(LNMF)的识别算法。采用块对角矩阵编码彩色图像不同通道的颜色信息,在LNMF算法中增加块对角约束和Fisher判别约束,对不同通道的颜色信息同时进行计算并融入人脸的类别信息,用于提取人脸特征。在CVL和PIE彩色人脸数据库上的实验结果验证了该识别算法的有效性。 展开更多
关键词 人脸识别 非负矩阵分解 FISHER判别
在线阅读 下载PDF
基于Contourlet变换和NMF的掌纹识别算法 被引量:2
12
作者 刘洋 李燕华 +2 位作者 潘新 多化琼 苏静 《计算机工程》 CAS CSCD 2012年第13期175-177,共3页
提出一种基于Contourlet变换和非负矩阵分解(NMF)的掌纹识别算法。通过对源图像Contourlet进行小波变换,将提取出的低频分量用NMF法提取特征值,用最近邻方法进行分类。实验结果表明,该算法较单纯的NMF和2DPCA等算法识别性能有较大提高,... 提出一种基于Contourlet变换和非负矩阵分解(NMF)的掌纹识别算法。通过对源图像Contourlet进行小波变换,将提取出的低频分量用NMF法提取特征值,用最近邻方法进行分类。实验结果表明,该算法较单纯的NMF和2DPCA等算法识别性能有较大提高,能较好地捕捉图像的边缘信息。 展开更多
关键词 CONTOURLET变换 非负矩阵分解 掌纹识别 融合 特征提取 2DPCA算法
在线阅读 下载PDF
体积约束的稀疏NMF高光谱解混 被引量:5
13
作者 王伞 韩月 王立国 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2019年第12期2077-2082,共6页
为了解决单纯非负矩阵分解计算繁复,收敛速度慢的问题,本文提出了一种基于自然梯度下降的体积最小及丰度稀疏约束的非负矩阵分解方法。该方法在目标函数中加入体积最小和丰度稀疏约束,可以对混合图像进行较好地分解;采用自然梯度下降的... 为了解决单纯非负矩阵分解计算繁复,收敛速度慢的问题,本文提出了一种基于自然梯度下降的体积最小及丰度稀疏约束的非负矩阵分解方法。该方法在目标函数中加入体积最小和丰度稀疏约束,可以对混合图像进行较好地分解;采用自然梯度下降的方法进行迭代,加快了算法收敛速度。实验结果表明:该方法能有效克服最小体积约束非负矩阵分解法速度慢且不稀疏的缺陷,相对于解混效果(SAD)相近的方法提速100倍,相对于解混时间相近的算法,此方法的解混精度提高0.02°;此方法尤其适用于像元较多的高光谱图像。 展开更多
关键词 高光谱图像 线性光谱混合模型 非负矩阵分解 体积最小 丰度稀疏 自然梯度 端元提取 光谱解混
在线阅读 下载PDF
基于NMF-SVM模型的上肢sEMG手势识别方法 被引量:11
14
作者 隋修武 牛佳宝 +1 位作者 李昊天 乔明敏 《计算机工程与应用》 CSCD 北大核心 2020年第17期161-166,共6页
针对基于表面肌电信号进行动作识别的问题,按照不同的运动形态对应的各肌肉激活程度不同的思路,建立基于非负矩阵分解(NMF)与支持向量机(SVM)的联合模型,对从肌电信号中提取的特征值按照行表示肌肉类型,列表示特征值类型的规则组成规律... 针对基于表面肌电信号进行动作识别的问题,按照不同的运动形态对应的各肌肉激活程度不同的思路,建立基于非负矩阵分解(NMF)与支持向量机(SVM)的联合模型,对从肌电信号中提取的特征值按照行表示肌肉类型,列表示特征值类型的规则组成规律性的特征矩阵,并对特征矩阵进行非负矩阵分解降维,降维得到的表征各肌肉激活程度的系数矩阵送入到支持向量机中训练并分类。基于非负矩阵分解与支持向量机联合模型与传统SVM模型相比,计算效率提高了一半,识别率提高了5.2%;通过样本分离实验表明,该算法依然有91.7%以上的识别率,验证了算法的有效性。 展开更多
关键词 表面肌电信号(sEMG) 非负矩阵分解(nmf) 支持向量机(SVM) 特征矩阵 模式识别
在线阅读 下载PDF
NMF初始化研究及其在文本分类中的应用 被引量:2
15
作者 翟亚利 吴翊 《计算机工程》 CAS CSCD 北大核心 2008年第16期191-193,197,共4页
对非负矩阵分解的初始化进行研究,提出针对文本分类的主成分分析(PCA)、有监督PCA(SPCA)和模糊C平均3种初始化方法并进行了实验。多类文本分类的实验结果表明,这些方法有效地解决了初值对结果的影响问题,不同程度地提高了文本分类结果,... 对非负矩阵分解的初始化进行研究,提出针对文本分类的主成分分析(PCA)、有监督PCA(SPCA)和模糊C平均3种初始化方法并进行了实验。多类文本分类的实验结果表明,这些方法有效地解决了初值对结果的影响问题,不同程度地提高了文本分类结果,其中SPCA优于其他2种方法。 展开更多
关键词 非负矩阵分解 模糊C平均 文本分类
在线阅读 下载PDF
隐私保护的去中心联邦多视图聚类
16
作者 雷一凡 陈晓红 《计算机工程》 北大核心 2025年第7期180-189,共10页
在大数据时代,存在大量多视图数据,现有的多视图聚类方法大都把所有视图数据汇总到一起进行学习,但在实际应用中,不同视图的数据大多存储在不同的设备中,甚至有些设备上的数据涉及隐私,无法共享。如果把每个视图的数据视为分布式网络中... 在大数据时代,存在大量多视图数据,现有的多视图聚类方法大都把所有视图数据汇总到一起进行学习,但在实际应用中,不同视图的数据大多存储在不同的设备中,甚至有些设备上的数据涉及隐私,无法共享。如果把每个视图的数据视为分布式网络中的一个节点,联邦学习则可有效解决数据无法共享和隐私保护的问题,联邦多视图聚类正是将联邦学习引入多视图聚类而得到的一类方法。联邦学习利用中心服务器进行协调,当中心服务器缺失或出现故障时,该方法将失效。为此,提出一种去中心的联邦多视图聚类(DFMC)方法。首先通过非负矩阵分解(NMF)学习每个视图的低维表示,然后根据视图信息的一致性,针对不同视图的低维表示给出一致性约束,该约束可以实现邻居视图间的通信,构建去中心的联邦学习环境,得到一个统一的低维表示,进而进行聚类。在此基础上,使用交替极小化(AM)算法对每个视图分别进行求解,从而实现隐私保护。在真实数据集上的实验结果验证了DFMC的有效性和收敛性。 展开更多
关键词 多视图聚类 非负矩阵分解 联邦学习 去中心 隐私保护
在线阅读 下载PDF
基于NMF及其正交投影变换的数字水印算法 被引量:1
17
作者 牛万红 潘晨 《北京理工大学学报》 EI CAS CSCD 北大核心 2011年第6期727-731,744,共6页
提出一种基于非负矩阵分解(non-negative matrix factorization,NMF)及其正交投影变换的数字水印算法.利用NMF构造图像基于部分表示的基矩阵,将其正交并作为水印检测的密钥;将水印信息嵌入图像在正交基矩阵上投影的系数矩阵;再通过反变... 提出一种基于非负矩阵分解(non-negative matrix factorization,NMF)及其正交投影变换的数字水印算法.利用NMF构造图像基于部分表示的基矩阵,将其正交并作为水印检测的密钥;将水印信息嵌入图像在正交基矩阵上投影的系数矩阵;再通过反变换重构图像.由于上述措施保持了NMF部分表示整体的能力,且改迭代运算为矩阵投影运算,因而算法在重构精度方面表现出明显的优势.将其应用到数字水印系统,并与文献[4]中实现的水印算法进行对比.实验结果表明,改进算法的鲁棒性更好,实用性更强. 展开更多
关键词 非负矩阵分解 正交投影 数字水印
在线阅读 下载PDF
NMF的数据分类方法在肿瘤分类上的应用 被引量:1
18
作者 张忠元 章祥荪 《计算机工程与应用》 CSCD 北大核心 2010年第16期245-248,共4页
在生物信息学中,一个重要的问题是基于微芯片技术将肿瘤分类到不同的类别中去。和许多传统的分类问题相比,这个问题的主要困难是基因空间的维数很高,而要分类的样本数量很小。非负矩阵分解(NMF)在微芯片数据聚类问题中已经成功地解决了... 在生物信息学中,一个重要的问题是基于微芯片技术将肿瘤分类到不同的类别中去。和许多传统的分类问题相比,这个问题的主要困难是基因空间的维数很高,而要分类的样本数量很小。非负矩阵分解(NMF)在微芯片数据聚类问题中已经成功地解决了这个问题。将非负矩阵分解拓展到数据分类,尤其是肿瘤分类中去取得了很好的效果。基于非负矩阵分解的方法有三个优点:良好的分类成绩,无参数和良好的可解释性。 展开更多
关键词 非负矩阵分解 微芯片 数据分类
在线阅读 下载PDF
基于BEMD与NMF的多源遥感图像融合
19
作者 崇元 徐晓刚 《计算机工程》 CAS CSCD 2012年第23期224-226,230,共4页
传统二维经验模式分解图像融合方法以像素点能量最大原则作为融合依据,而不分析图像的特征信息,特征信息得不到最大保留。为此,提出基于二维经验模式分解与非负矩阵分解的图像融合方法。通过二维经验模式分解得到图像的内蕴模式函数和... 传统二维经验模式分解图像融合方法以像素点能量最大原则作为融合依据,而不分析图像的特征信息,特征信息得不到最大保留。为此,提出基于二维经验模式分解与非负矩阵分解的图像融合方法。通过二维经验模式分解得到图像的内蕴模式函数和剩余量,并对内蕴模式函数进行非负矩阵分解,提取真实内蕴模式函数作为图像融合后的内蕴模式函数,利用反向重构得到融合图像。实验结果表明,该方法在图像清晰度与对比度方面均优于二维经验模式分解与非负矩阵分解方法。 展开更多
关键词 二维经验模式分解 非负矩阵分解 多尺度分解 图像融合 图像增强 多源遥感图像
在线阅读 下载PDF
基于NMF分组策略的人脸识别 被引量:2
20
作者 宿韬 张强 +1 位作者 魏小鹏 周昌军 《计算机工程》 CAS CSCD 北大核心 2009年第4期199-200,203,共3页
提出一种运用非负矩阵分解(NMF)分组策略进行人脸识别的方法。将训练图像分组,分别对每组图像作NMF,获取每组图像的基图像构成的非负特征子空间,将训练图像和测试图像分别向各个特征子空间进行投影,将每组图像提取出的特征系数混合,根... 提出一种运用非负矩阵分解(NMF)分组策略进行人脸识别的方法。将训练图像分组,分别对每组图像作NMF,获取每组图像的基图像构成的非负特征子空间,将训练图像和测试图像分别向各个特征子空间进行投影,将每组图像提取出的特征系数混合,根据最近邻原则进行识别。基于ORL人脸数据库上的实验证明了该方法的有效性。 展开更多
关键词 非负矩阵分解 人脸识别 基图像
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部