Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and ...Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.展开更多
With the development of automation in smart grids,network reconfiguration is becoming a feasible approach for improving the operation of distribution systems.A novel reconfiguration strategy was presented to get the o...With the development of automation in smart grids,network reconfiguration is becoming a feasible approach for improving the operation of distribution systems.A novel reconfiguration strategy was presented to get the optimal configuration of improving economy of the system,and then identifying the important nodes.In this strategy,the objectives increase the node importance degree and decrease the active power loss subjected to operational constraints.A compound objective function with weight coefficients is formulated to balance the conflict of the objectives.Then a novel quantum particle swarm optimization based on loop switches hierarchical encoded was employed to address the compound objective reconfiguration problem.Its main contribution is the presentation of the hierarchical encoded scheme which is used to generate the population swarm particles of representing only radial connected solutions.Because the candidate solutions are feasible,the search efficiency would improve dramatically during the optimization process without tedious topology verification.To validate the proposed strategy,simulations are carried out on the test systems.The results are compared with other techniques in order to evaluate the performance of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China (70971132)
文摘Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.
基金Project(61102039)supported by the National Natural Science Foundation of ChinaProject(2014AA052600)supported by National Hi-tech Research and Development Plan,China
文摘With the development of automation in smart grids,network reconfiguration is becoming a feasible approach for improving the operation of distribution systems.A novel reconfiguration strategy was presented to get the optimal configuration of improving economy of the system,and then identifying the important nodes.In this strategy,the objectives increase the node importance degree and decrease the active power loss subjected to operational constraints.A compound objective function with weight coefficients is formulated to balance the conflict of the objectives.Then a novel quantum particle swarm optimization based on loop switches hierarchical encoded was employed to address the compound objective reconfiguration problem.Its main contribution is the presentation of the hierarchical encoded scheme which is used to generate the population swarm particles of representing only radial connected solutions.Because the candidate solutions are feasible,the search efficiency would improve dramatically during the optimization process without tedious topology verification.To validate the proposed strategy,simulations are carried out on the test systems.The results are compared with other techniques in order to evaluate the performance of the proposed method.