期刊文献+
共找到47,287篇文章
< 1 2 250 >
每页显示 20 50 100
Recent Advances in Non-Enzymatic Electrochemical Sensors for Theophylline Detection
1
作者 Ernis Gustria Putri Yulia M T A +5 位作者 Syauqi Muhammad Iqbal Jiwanti Prastika Krisma Hartati Yeni Wahyuni Kondo Takeshi Anjani Qonita Kurnia Gunlazuardi Jarnuzi 《电化学(中英文)》 北大核心 2025年第3期1-24,共24页
Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to tre... Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to treat respiratory disorders such as asthma,bronchitis,and emphysema,has a narrow therapeutic window with a safe plasma concentration ranging from 55.5-111.0μmol·L^(-1)in adults.Accurate monitoring of TP levels is essential because too low or too high can cause se-rious side effects.In this regard,non-enzymatic electrochemical sensors offer a practical solution with rapidity,portability,and high sensitivity.This article aims to provide a comprehensive review of the recent developments of non-enzymatic electrochemical sensors for TP detection,highlighting the basic principles,electro-oxidation mechanisms,catalytic effects,and the role of modifying materials on electrode performance.Carbon-based electrodes such as glassy carbon electrodes(GCEs),carbon paste electrodes(CPEs),and carbon screen-printed electrodes(SPCEs)have become the primary choices for non-enzymatic sensors due to their chemical stability,low cost,and flexibility in modification.This article identifies the sig-nificant contribution of various modifying materials,including nanomaterials such as carbon nanotubes(CNTs),graphene,metal oxides,and multi-element nanocomposites.These modifications enhance sensors’electron transfer,sensitivity,and selectivity in detecting TP at low concentrations in complex media such as blood plasma and pharmaceutical samples.The electro-oxidation mechanism of TP is also discussed in depth,emphasizing the hydroxyl and carbonyl reaction pathways strongly influenced by pH and electrode materials.These mechanisms guide the selection of the appropriate electrode ma-terial for a particular application.The main contribution of this article is to identify superior modifying materials that can improve the performance of non-enzymatic electrochemical sensors.In a recent study,the combination of multi-element nanocomposites based on titanium dioxide(TiO_(2)),CNTs,and gold nanoparticles(AuNPs)resulted in the lowest detection limit of 3×10^(-5)μmol·L^(-1),reflecting the great potential of these materials for developing high-performance electrochemical sensors.The main conclusion of this article is the importance of a multidisciplinary approach in electrode material design to support the sensitivity and selectivity of TP detection.In addition,there is still a research gap in understanding TP’s more detailed oxidation mechanism,especially under pH variations and complex environments.Therefore,further research on electrode modification and analysis of the TP oxidation mechanism are urgently needed to improve the accuracy and sta-bility of the sensor while expanding its applications in pharmaceutical monitoring and medical diagnostics.By integrating various innovative materials and technical approaches,this review is expected to be an essential reference for developing efficient and affordable non-enzymatic electrochemical sensors. 展开更多
关键词 Theophylline detection Non-enzymatic sensors Electrochemical sensors Modifier electrode Reaction mechanism
在线阅读 下载PDF
Design optimization of a sensitivity-enhanced tilt sensor based on femtosecond fiber bragg grating
2
作者 Nutsuglo Theophilus GUO Yong-xing +3 位作者 ZHOU Wan-huan YU Hai-sheng REN Ru-hua SHEN Shun-an 《中国光学(中英文)》 北大核心 2025年第4期908-920,共13页
Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Fir... Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Firstly,structural design of the tilt sensor was conducted based on static mechanics principles.By positioning the FBG away from the beam’s neutral axis,linear strain enhancement in the FBG was achieved,thereby improving sensor sensitivity.The relationship between FBG strain,applied force,and the offset distance from the neutral axis was established,determining the optimal distance corresponding to maximum strain.Based on this optimization scheme,a prototype of the tilt sensor was designed,fabricated,and experimentally tested.Experimental results show that the FBG offset distance yielding maximum sensitivity is 4.4 mm.Within a tilt angle range of−30°to 30°,the sensor achieved a sensitivity of 129.95 pm/°and a linearity of 0.9997.Compared to conventional FBG-based tilt sensors,both sensitivity and linearity were significantly improved.Furthermore,the sensor demonstrated excellent repeatability(error<0.94%),creep resistance(error<0.30%),and temperature stability(error<0.90%).These results demonstrate the sensor’s excellent potential for SHM applications.The sensor has been successfully deployed in an underground pipeline project,conducting long-term monitoring of tilt and deformation in the steel support structures,further proving its value for engineering safety monitoring. 展开更多
关键词 fiber Bragg grating tilt sensor sensitivity-enhanced femtosecond FBG
在线阅读 下载PDF
Metal-sensitive diaphragm fiber optic Fabry-Perot pressure sensor with temperature compensation
3
作者 WANG Hao-xing LIU Jia +6 位作者 WANG Hai-yang WANG Jun LI Yuan-hao YIN Jian-xiong WAN Shun DAI Yun-teng JIA Ping-gang 《中国光学(中英文)》 北大核心 2025年第5期1255-1265,共11页
A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments,such as engine fuel systems,oil and gas wells,and aviation hy... A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments,such as engine fuel systems,oil and gas wells,and aviation hydraulic systems.The sensor combines a metal-sensitive diaphragm and a sapphire wafer to form a temperature-pressure dual Fabry-Perot(FP)interference cavity.A cross-correlation signal demodulation algorithm and a temperature decoupling method are utilized to reduce the influence of temperature crosstalk on pressure measurement.Experimental results show that the maximum nonlinear error of the sensor pressure measurement is 0.75%full scale(FS)and 0.99%FS at room temperature and 300°C,respectively,in a pressure range of 0−10 MPa and 0−1.5 MPa.The sensor’s pressure measurement accuracy is 1.7%FS when using the temperature decoupling method.The sensor exhibits good static pressure characteristics,stability,and reliability,providing an effective solution for high-temperature pressure monitoring applications. 展开更多
关键词 high-temperature pressure sensor dual Fabry-Perot interference cavity temperature compensa-tion cross-correlation algorithm
在线阅读 下载PDF
Development of a composite sandwich-structure piezoresistive pressure sensor for subtle-pressures application
4
作者 Mosayeb Shiri Nowrouz Mohammad Nouri Mohammad Riahi 《Defence Technology(防务技术)》 2025年第3期48-61,共14页
The Design and manufacturing of a noble piezoresistive pressure sensor(PS) for subtle pressures(<1 kPa) were presented. Meanwhile, in the studies conducted in the field of pressure sensors, the measurement of subtl... The Design and manufacturing of a noble piezoresistive pressure sensor(PS) for subtle pressures(<1 kPa) were presented. Meanwhile, in the studies conducted in the field of pressure sensors, the measurement of subtle pressures has received less attention. The limitations in the inherent gauge factor in silicon, have led to the development of polymer and composite resistive sensitive elements. However,in the development of resistance sensing elements, the structure of composite elements with reinforcement core has not been used. The proposed PS had a composite sandwich structure consisting of a nanocomposite graphene layer covered by layers of PDMS at the bottom and on the top coupled with a polyimide(PI) core. Various tests were performed to analyze the PS. The primary design target was improved sensitivity, with a finite-element method(FEM) utilized to simulate the stress profile over piezoresistive elements and membrane deflection at various pressures. The PS manufacturing process is based on Laser-engraved graphene(LEG) technology and PDMS casting. Experimental data indicated that the manufactured PS exhibits a sensitivity of 67.28 mV/kPa for a pressure range of 30-300 Pa in ambient temperature. 展开更多
关键词 Piezoresistive pressure sensor sensor manufacturing FEM Stretchable sensor LEG
在线阅读 下载PDF
Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd^(2+)and Pb^(2+)
5
作者 GUO Wei GUO Zhuoyi +3 位作者 LI Xiaoxin ZHANG Wei YAN Juanzhi GUO Tingting 《无机化学学报》 北大核心 2025年第9期1889-1902,共14页
A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.The... A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.Then,an electrochemical sensor modified with Co-MOF on a glassy carbon electrode(Co-MOF@GCE)was constructed for detecting Cd^(2+)and Pb^(2+)in aqueous solutions.The sensor exhibited a linear range of 1.0-16.0µmol·L^(-1)with a detection limit(LOD)of 4.609 nmol·L^(-1)for Cd^(2+),and 0.5-10.0µmol·L^(-1)with an LOD of 1.307 nmol·L^(-1)for Pb^(2+).Simultaneous detection of both ions within 0.5-7.0µmol·L^(-1)achieved LOD values of 0.47 nmol·L^(-1)(Cd^(2+))and 0.008 nmol·L^(-1)(Pb^(2+)),respectively.Analysis of real water samples(tap water,mineral water,and river water)yielded recoveries of 95%-105%,validating practical applicability.Density functional theory(DFT)calculations reveal that synergistic interactions between cobalt centers and N/O atoms enhance adsorption and electron-transfer efficiency.CCDC:2160744. 展开更多
关键词 metal-organic frameworks electrochemical sensor heavy metal ions square wave anodic stripping voltammetry
在线阅读 下载PDF
Vibration sensor based on stretchable optical fiber and interferometric measurement
6
作者 WU Jia-jun XIE Kang +5 位作者 CAO Lei CAO Xuan LI Zhen-jia ZHAO Guo-shuai HE Jia-cheng TU Guo-jie 《中国光学(中英文)》 北大核心 2025年第5期1200-1208,共9页
Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality c... Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%. 展开更多
关键词 stretchable optical fiber sensing fiber optic vibration sensor phase generated carrier
在线阅读 下载PDF
Factor graph method for target state estimation in bearing-only sensor network
7
作者 CHEN Zhan FANG Yangwang +1 位作者 ZHANG Ruitao FU Wenxing 《Journal of Systems Engineering and Electronics》 2025年第2期380-396,共17页
For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.... For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.This paper pro-poses a distributed state estimation method based on two-layer factor graph.Firstly,the measurement model of the bearing-only sensor network is constructed,and by investigating the observ-ability and the Cramer-Rao lower bound of the system model,the preconditions are analyzed.Subsequently,the location fac-tor graph and cubature information filtering algorithm of sensor node pairs are proposed for localized estimation.Building upon this foundation,the mechanism for propagating confidence mes-sages within the fusion factor graph is designed,and is extended to the entire sensor network to achieve global state estimation.Finally,groups of simulation experiments are con-ducted to compare and analyze the results,which verifies the rationality,effectiveness,and superiority of the proposed method. 展开更多
关键词 factor graph cubature information filtering bearing-only sensor network state estimation
在线阅读 下载PDF
Collaborative positioning for swarms:A brief survey of vision,LiDAR and wireless sensors based methods 被引量:2
8
作者 Zeyu Li Changhui Jiang +3 位作者 Xiaobo Gu Ying Xu Feng zhou Jianhui Cui 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期475-493,共19页
As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo... As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research. 展开更多
关键词 Collaborative positioning VISION LIDAR Wireless sensors sensor fusion
在线阅读 下载PDF
Fabrication of a novel electrochemical sensor based on MnFe_(2)O_(4)/graphene modified glassy carbon electrode for the sensitive detection of bisphenol A 被引量:1
9
作者 GAO Si-lei TANG Jian-she +1 位作者 XIANG Li LONG Jin-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1856-1869,共14页
Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposite... Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposites modified glassy carbon electrode(GCE),which is very efficient and sensitive to detect bisphenol A(BPA).MnFe_(2)O_(4)/graphene(GR)was synthesized by immobilizing the MnFe_(2)O_(4) microspheres on the graphene nanosheets via a simple one-pot solvothermal method.The morphology and structure of the MnFe_(2)O_(4)/GR nanocomposite have been characterized through scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).In addition,electrochemical properties of the modified materials are comparably explored by means of cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV).Under the optimal conditions,the proposed electrochemical sensor for the detection of BPA has a linear range of 0.8-400μmol/L and a detection limit of 0.0235μmol/L(S/N=3)with high sensitivity,good selectivity and high stability.In addition,the proposed sensor was used to measure the content of BPA in real water samples with a recovery rate of 97.94%-104.56%.At present,the synthesis of MnFe_(2)O_(4)/GR provides more opportunities for the electrochemical detection of BPA in practical applications. 展开更多
关键词 MnFe_(2)O_(4) GRAPHENE electrochemical sensor bisphenol A
在线阅读 下载PDF
Hybrid pedestrian positioning system using wearable inertial sensors and ultrasonic ranging 被引量:1
10
作者 Lin Qi Yu Liu +2 位作者 Chuanshun Gao Tao Feng Yue Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期327-338,共12页
Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional ... Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios. 展开更多
关键词 Pedestrian positioning system Wearable inertial sensors Ultrasonic ranging Deep-learning Data and model dual-driven
在线阅读 下载PDF
Low palladium content CeO_(2)/ZnO composite for acetone sensor with sub-second response prepared by ultrasonic method
11
作者 CHEN Xu-jie XING Qiao-ling +2 位作者 TANG Xuan CAI Yong ZHANG Ming 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2137-2149,共13页
In practical applications,noble metal doping is often used to prepare high performance gas sensors,but more noble metal doping will lead to higher preparation costs.In this study,CeO_(2)/ZnO-Pd with low palladium cont... In practical applications,noble metal doping is often used to prepare high performance gas sensors,but more noble metal doping will lead to higher preparation costs.In this study,CeO_(2)/ZnO-Pd with low palladium content was prepared by ultrasonic method with fast response and high selectivity for acetone sensing.With the same amount of palladium added,the selectivity coefficient of CeO_(2)/ZnO-Pd is 1.88 times higher than that of the stirred sensor.Compared with the pure PdO-doped CeO_(2)/ZnO-PdO material,the content of Pd in CeO_(2)/ZnO-PdO is about 30%of that in CeO_(2)/ZnO-PdO,but the selectivity coefficient for acetone is 2.56 times higher.The CeO_(2)/ZnO-Pd sensor has a higher response(22.54)to 50×10^(−6) acetone at 300℃and the selectivity coefficient is 2.57 times that of the CeO_(2)/ZnO sensor.The sensor has a sub-second response time(0.6 s)and still has a 2.36 response to 330×10^(−9) of acetone.Ultrasonic doping makes Pd particles smaller and increases the contact area with gas.Meanwhile,the composition of n-p-n heterojunction and the synergistic effect of Pd/PdO improve the sensor performance.It shows that ultrasonic Pd doping provides a way to improve the utilization rate of doped metals and prepare highly selective gas sensors. 展开更多
关键词 low palladium sub-second responce ultrasonic method acetone sensor heterojunction
在线阅读 下载PDF
High Sensitivity Submicron Scale Temperature Sensor Based on Perovskite Nanoplatelet Lasers
12
作者 ZHAO Ruofan TAO Jianxun +7 位作者 XI Yuying CHEN Jiangzhao JI Ting WANG Wenyan WEN Rong CUI Yanxia CHEN Junsheng LI Guohui 《发光学报》 EI CAS CSCD 北大核心 2024年第9期1511-1520,共10页
Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonato... Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonators.These resonators can be remotely excited and read out using free-space structures,simplifying the process of sensing.In this study,we present a submicron-scale temperature sensor with a remarkable sensitivity up to 185 pm/℃based on a trian-gular MAPbI3 nanoplatelet(NPL)laser.Notably,as temperature changes,the peak wavelength of the laser line shifts lin-early.This unique characteristic allows for precise temperature sensing by tracking the peak wavelength of the NPL laser.The optical modes are confined within the perovskite NPL,which measures just 85 nm in height,due to total internal reflec-tion.Our NPL laser boasts several key features,including a high Q of~2610 and a low laser threshold of about 19.8μJ·cm^(−2).The combination of exceptional sensitivity and ultra-small size makes our WGM device an ideal candidate for integration into systems that demand compact temperature sensors.This advancement paves the way for significant prog-ress in the development of ultrasmall temperature sensors,opening new possibilities across various fields. 展开更多
关键词 temperature sensor submicron scale perovskite nanoplatelet
在线阅读 下载PDF
Isomeric fluorescence sensors for wide range detection of ionizing radiations
13
作者 Jimin Han Tianyu Yang +1 位作者 Li Yang Yuanjian Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期247-257,共11页
In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduce... In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection. 展开更多
关键词 Perylene imide Intramolecular PET Ionizing radiation detection Fluorescence sensor ISOMERS
在线阅读 下载PDF
MZI/FPI Fiber Optic Dual-parameter Sensor Based on a Double Cone and Air Cavity Structure(Invited)
14
作者 YUAN Tingxuan ZHAO Lilong +5 位作者 REN Jianxin MAO Yaya ULLAH Rahat WU Xiangyu MAO Beibei XIA Wenchao 《光子学报》 EI CAS CSCD 北大核心 2024年第10期64-72,共9页
This paper proposes a Mach Zehnder/Fabry Perot Interferometer(MZI/FPI)fiber sensor based on Single-mode Fiber(SMF)and Hollow-core Fiber(HCF),which has high sensitivity to temperature and lateral loads.The proposed dev... This paper proposes a Mach Zehnder/Fabry Perot Interferometer(MZI/FPI)fiber sensor based on Single-mode Fiber(SMF)and Hollow-core Fiber(HCF),which has high sensitivity to temperature and lateral loads.The proposed device consists of two single-mode fiber cones formed by manually controlling the fusion splicer and an air cavity formed by fusing a section of hollow-core fiber.The structure of the sensor is a double cone cascaded air cavity.At the beginning of the design,we compared the basic transmission spectra of single cone structure and double cone structure experimentally,and therefore chose to use double cone structure and air cavity cascade.Light undergoes its first reflection at the first interface between the single-mode fiber and the air cavity structure,and its second reflection at the second interface between the air cavity structure and the single-mode fiber.The two reflected light waves produced by the two reflections form FP interference,which can be used to measure lateral loads.The transmitted light is excited through the first cone,and a portion of the core mode light is excited to the cladding,while another portion of the core mode light continues to propagate in the core.The light couples at the second cone,and the cladding mode light couples back into the core,forming MZ interference with the core mode light,which can be used to measure temperature.The use of hollow-core fiber to form an air cavity has little effect on transmitted light,while avoiding the problem of crosstalk in dual parameter measurements.By designing temperature and lateral load experiments,this article verifies the sensitivity characteristics of this sensor to temperature and lateral loads.A significant redshift phenomenon was observed in the temperature experiment.A significant redshift phenomenon also occurred in the lateral load experiment.Through wavelength demodulation,the experimental results show that the wavelength sensitivity of the sensor to temperature is 56.29 pm/℃in the range of 30℃to 80℃.The wavelength sensitivity of the sensor to lateral loads is 1.123 nm/N in the range of 0~5 N.In addition,we have prepared multiple sets of fiber optic sensors with this structure and conducted repeated experiments to verify that the sensing performance of this structure of fiber optic sensors for temperature and lateral load is relatively stable.Also,the different waist diameters of cones will have a certain impact on the transmission spectrum of MZ,while the length of the air cavity will also have a certain impact on the reflection spectrum of FP.This article lists some fiber optic sensors for dual parameter measurement of temperature and lateral load.Compared with the listed sensors,the fiber optic sensor proposed in this article has better sensitivity to temperature and lateral load.And the fiber optic sensor proposed in this article has a simple manufacturing process,low production cost,and good performance,which has certain prospects in scientific research and industrial production. 展开更多
关键词 Temperature Lateral load Fiber sensor Mach-Zehnder interferometer Fabry-Pérot interferometer
在线阅读 下载PDF
一种基于STM32微控制器的电阻型湿度传感器校准系统设计 被引量:2
15
作者 张鹏 殷家璇 +1 位作者 陶佰睿 李会 《传感技术学报》 北大核心 2025年第1期75-81,共7页
提出了一种基于STM32微控制器的电阻型湿度传感器校准系统,旨在提高传感器的工作性能,特别是要减少因湿滞和温度噪声等带来的误差。主要包括基于PID(比例微分积分)算法与PWM(脉宽调制)控制的饱和盐溶液相对湿度参考标准测试环境,干湿球... 提出了一种基于STM32微控制器的电阻型湿度传感器校准系统,旨在提高传感器的工作性能,特别是要减少因湿滞和温度噪声等带来的误差。主要包括基于PID(比例微分积分)算法与PWM(脉宽调制)控制的饱和盐溶液相对湿度参考标准测试环境,干湿球温度计湿度辅助测试定标系统,以及Buck(降压斩波)开关电源和LDO(低压差线性稳压)电路组成的电源电路、恒温电路、气压检测电路、电机驱动电路和输出显示电路等模块的软硬件设计。最后自制GO/ZnO/PCF(氧化石墨烯/氧化锌/植物纤维素薄膜)电阻型湿度传感器,把该电阻型湿度传感器放置在各相对湿度参考标准测试环境中实时记录传感器输出电阻值并对其进行校准测试,经多轮试验和数据处理,运用二分查找算法获取该传感器对应湿度数据。研究结果表明,所设计的校准系统可以将湿度传感器误差控制在±2%RH内,并在标准湿度测试环境中实现10 s内达到90%的稳定响应。此外,经过误差校准后,传感器恢复至新的稳定状态所需的时间不超过30 s。该校准系统具有低成本、简便操作和便携性等显著优势,具有重要的实用价值。 展开更多
关键词 湿度传感器 校准实验箱 嵌入式系统 PID
在线阅读 下载PDF
基于多传感器的火灾检测仿真实验系统 被引量:1
16
作者 张佳 辛斌 王蕾 《实验室研究与探索》 北大核心 2025年第5期42-47,共6页
为了提供面向学生的传感器火灾检测实验平台,设计了基于Stacking集成学习的火灾检测算法和基于长短期记忆神经网络自编码器(LSTM-AE)的异常检测算法,并搭建了基于LabVIEW和MATLAB软件混合编程的多传感器火灾检测仿真实验系统。该系统能... 为了提供面向学生的传感器火灾检测实验平台,设计了基于Stacking集成学习的火灾检测算法和基于长短期记忆神经网络自编码器(LSTM-AE)的异常检测算法,并搭建了基于LabVIEW和MATLAB软件混合编程的多传感器火灾检测仿真实验系统。该系统能够根据实际需求调整算法参数,有效检测火灾及传感器故障,且能够可视化检测结果。这符合新工科教育中“学生中心、产出导向”的先进理念,在提高教学效率的同时避免了可能的危险和浪费,为培养具备创新思维、实践能力和安全意识的复合型人才提供了有力支撑。 展开更多
关键词 多传感器 火灾检测 故障检测 仿真实验
在线阅读 下载PDF
航天用图像传感器研究现状及发展趋势
17
作者 刘昌举 焦金龙 +3 位作者 王振 蒋祥倩 杨洪 吕玉冰 《航天返回与遥感》 北大核心 2025年第3期61-73,共13页
相比于民用图像传感器,航天用图像传感器需要更高的精度、稳定性、可靠性和耐久性,需要适应极端的环境条件,如温度、压力和辐射等,所需材料特殊、结构复杂。近年来,航天用图像传感器取得了卓越的进步和发展,为大量航天任务进行光学测量... 相比于民用图像传感器,航天用图像传感器需要更高的精度、稳定性、可靠性和耐久性,需要适应极端的环境条件,如温度、压力和辐射等,所需材料特殊、结构复杂。近年来,航天用图像传感器取得了卓越的进步和发展,为大量航天任务进行光学测量提供了基础,被称为现代信息系统捕捉图像的“视网膜”。文章聚焦于航天用图像传感器,通过综合国内外文献和相关报道,着重介绍了CCD图像传感器和CMOS图像传感器(CIS)在航天遥感中的对地观测、对空观测以及航天器控制等应用方向的研究现状,探讨了航天用图像传感器所面临的挑战和发展趋势。 展开更多
关键词 航天遥感 CCD图像传感器 CMOS图像传感器
在线阅读 下载PDF
可印刷柔性传感器在人体健康监测中的研究进展 被引量:1
18
作者 邵艳秋 任婷 +7 位作者 王迪 姬旭 柳林 杨荟 杨皓婷 张吉振 陶金龙 孔娜 《材料导报》 北大核心 2025年第12期24-32,共9页
随着可穿戴技术的迅速发展,可印刷柔性传感器作为一种创新的传感器制备方法,已在人体健康监测领域取得了显著的研究进展。本文综述了可印刷柔性传感器在人体健康监测中的研究现状,从印刷方式、传感机制以及材料性质等角度出发,并结合可... 随着可穿戴技术的迅速发展,可印刷柔性传感器作为一种创新的传感器制备方法,已在人体健康监测领域取得了显著的研究进展。本文综述了可印刷柔性传感器在人体健康监测中的研究现状,从印刷方式、传感机制以及材料性质等角度出发,并结合可印刷柔性传感器的灵敏度、稳定性、重现性等方面对目前的可印刷柔性传感器展开了系统的总结。最后,进一步讨论了可印刷柔性传感器在新型可穿戴电子设备和人体疾病防控等领域的应用,并展望了可印刷柔性传感器在实际应用和发展过程中面临的一些挑战。 展开更多
关键词 柔性传感器 健康监测 导电材料 可穿戴设备
在线阅读 下载PDF
面向材料腐蚀防护的铅铋合金氧测氧控研究进展 被引量:1
19
作者 秦博 鲁盛会 +2 位作者 刘思涵 张洁 龙斌 《材料导报》 北大核心 2025年第4期135-146,共12页
铅铋合金具有优异的核性能、高导热率、高沸点和化学惰性等特点,以其作为冷却剂的铅铋快中子增殖反应堆是最具发展前景的第四代先进核能系统的六种堆型之一。铅铋合金冷却剂对反应堆结构材料较强的腐蚀性是限制铅铋快堆发展的重要因素;... 铅铋合金具有优异的核性能、高导热率、高沸点和化学惰性等特点,以其作为冷却剂的铅铋快中子增殖反应堆是最具发展前景的第四代先进核能系统的六种堆型之一。铅铋合金冷却剂对反应堆结构材料较强的腐蚀性是限制铅铋快堆发展的重要因素;然而,控制铅铋合金中溶解氧在特定的范围是实施结构材料在液态铅铋环境下腐蚀防护的有效手段之一,因此要求铅铋系统必须实现溶解氧的测量与控制,以保障反应堆的安全运行。近年来,随着铅铋快堆研发的深入,材料腐蚀防护关键共性技术不断突破,本文总结了面向反应堆结构材料腐蚀防护的铅铋溶解氧测量和控制技术研究进展,介绍了铅铋合金氧测氧控国内外研究现状,重点对比分析了不同氧控模式在铅铋快堆的应用前景,最后对面向铅铋快堆的氧测氧控技术的发展及应用进行了展望。 展开更多
关键词 铅铋合金 溶解氧 氧控 氧传感器 标定 腐蚀
在线阅读 下载PDF
基于铰链杠杆结构光纤光栅温度压力传感器
20
作者 刘强 马超 +5 位作者 魏淑辉 刘伟 王建鑫 吕靖薇 吕婷婷 刘超 《中国光学(中英文)》 北大核心 2025年第1期63-69,共7页
本文设计了一种高灵敏度温度和压力传感器。该传感结构利用膜片将压力传递给双铰链杠杆结构,采用光纤布拉格光栅(FBG1)作为应变传感器实现压力的测量。此外,双铰链杠杆的引入有效提升了传感器的压力测量灵敏度。仿真和实验测量结果证实... 本文设计了一种高灵敏度温度和压力传感器。该传感结构利用膜片将压力传递给双铰链杠杆结构,采用光纤布拉格光栅(FBG1)作为应变传感器实现压力的测量。此外,双铰链杠杆的引入有效提升了传感器的压力测量灵敏度。仿真和实验测量结果证实,该传感器在0~18 MPa的测量范围内,灵敏度达到453.16 pm/MPa。同时,将另外一支光纤布拉格光栅(FBG2)粘贴在杠杆上,以消除压力测量过程中的温度交叉敏感问题,从而实现温度和压力的同时测量。在25~65℃测量范围内,温度灵敏度为10.41 pm/℃。由于光纤传感器的抗电磁干扰特性,该类传感器可用于苛刻环境中的温度和压力测量。 展开更多
关键词 压力传感器 光纤布拉格光栅 铰链杠杆结构 温度传感器
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部