Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-d...Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun(2D-IB-SPETCG)is presented to describe the process of the ETC launch.Both calculated pressure and projectile muzzle velocity accord well with the experimental results.The feasibility of the 2D-IB-SPETCG model is proved.Depending on the experimental data and initial parameters,detailed distribution of the ballistics parameters can be simulated.With the distribution of pressure and temperature of the gas phase and the propellant,the influence of plasma during the ignition process can be analyzed.Because of the radial flowing plasma,the propellant in the area of the DRPG is ignited within 0.01 ms,while all propellant in the chamber is ignited within 0.09 ms.The radial ignition delay time is much less than the axial delay time.During the ignition process,the radial pressure difference is less than 5 MPa at the place 0.025 m away from the breech.The radial ignition uniformity is proved.The temperature of the gas increases from several thousand K(conventional ignition)to several ten thousand K(plasma ignition).Compare the distribution of the density and temperature of the gas,we know that low density and high temperature gas appears near the exits of the DRPG,while high density and low temperature gas appears at the wall near the breech.The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch.The 2D-IB-SPETC model can be used for prediction and improvement of experiments.展开更多
With the unique characteristics,electromagnetic launch technology is applicable to launch shipborne anti-torpedo torpedo(ATT).This paper aims to establish an analytic model to pre-evaluate the capture probability of t...With the unique characteristics,electromagnetic launch technology is applicable to launch shipborne anti-torpedo torpedo(ATT).This paper aims to establish an analytic model to pre-evaluate the capture probability of the electromagnetic launched ATT.The mathematics model of the multi-stage coilgun and the trajectory of the ATT is established for analysis.The influence factors of the capture probability are analyzed respectively,including the entry point dispersion of the ATT and the position dispersion of the incoming torpedo.Adopting the advanced angle interception mode,the ATT search model is obtained according to the positional relationship,and the course error is synthetically calculated according to the differentiation of implicit function.A geometric method to calculate the integral boundaries of the probability density function is proposed,based on the relative motion of the ATT and the incoming target.To verify the proposed integral model,the digital simulation and comparison is conducted.The results reveal that the variation trends and the calculation value of the proposed analytic model are coincident with the statistic results from Monte Carlo method.And implications of the results regarding the analytic model are discussed.展开更多
A 30 mm electrothermal-chemical(ETC) gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates(EGGR) of propellants during an...A 30 mm electrothermal-chemical(ETC) gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates(EGGR) of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient(dp/dt) is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW-1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley's modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient(dp/dt) and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.展开更多
In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure ...In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure from the muzzle)and the muzzle velocity are measured.Compared with the classical methods,the actual muzzle time is obtained by eliminating the ignition delay.The comparative analysis method is proposed with numerical simulations established by the transfer matrix method for multibody systems.The experiment results indicate that the proposed measurement system can effectively measure the actual muzzle time and reduce the error of classical methods,which match well with the simulation results showing the launch dynamics model is reliable and helpful for further analysis and design of the MLRS.展开更多
An important problem in studying the sloped rocket launch is to determine the oscillations and their effects on the initial conditions of the rocket path.This phenomenon influences the stability of the launching devic...An important problem in studying the sloped rocket launch is to determine the oscillations and their effects on the initial conditions of the rocket path.This phenomenon influences the stability of the launching device and the firing precision.It is assumed that the launching device and the moving rocket form a complex oscillating system that join together into a sum of rigid bodies bound by elastic elements(the vehicle chassis,the tilting platform and the rockets in the containers).The calculations of the launching device oscillations during the launch by numerical methods are presented.展开更多
针对大深度环境水下发射技术需求,提出一种利用水压驱动两级提拉式水下新型发射方案。利用大深度环境高压水驱动两级活塞实现武器快速发射。建立武器出管过程动力学模型,开展高压水驱动方案原理验证试验,并与高压气体驱动方案进行了对...针对大深度环境水下发射技术需求,提出一种利用水压驱动两级提拉式水下新型发射方案。利用大深度环境高压水驱动两级活塞实现武器快速发射。建立武器出管过程动力学模型,开展高压水驱动方案原理验证试验,并与高压气体驱动方案进行了对比分析。研究结果表明:水压驱动与气体驱动方案的内弹道结果基本一致,高压水发射方案在大深度环境具有显著优势;加速度峰值出现在发射瞬时和级间转换过程,级间转换过程武器加速度存在显著的陡变现象;水下发射武器出管过程弹道预报结果得出,在发射水深100~500 m条件下,武器出管过程最大速度范围为7.4~15.3 m/s,最大加速度小于100 m/s 2;研究结果验证了水压驱动两级活塞式发射方案的可行性,为装置的进一步研制开发提供了设计依据。展开更多
文摘Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun(2D-IB-SPETCG)is presented to describe the process of the ETC launch.Both calculated pressure and projectile muzzle velocity accord well with the experimental results.The feasibility of the 2D-IB-SPETCG model is proved.Depending on the experimental data and initial parameters,detailed distribution of the ballistics parameters can be simulated.With the distribution of pressure and temperature of the gas phase and the propellant,the influence of plasma during the ignition process can be analyzed.Because of the radial flowing plasma,the propellant in the area of the DRPG is ignited within 0.01 ms,while all propellant in the chamber is ignited within 0.09 ms.The radial ignition delay time is much less than the axial delay time.During the ignition process,the radial pressure difference is less than 5 MPa at the place 0.025 m away from the breech.The radial ignition uniformity is proved.The temperature of the gas increases from several thousand K(conventional ignition)to several ten thousand K(plasma ignition).Compare the distribution of the density and temperature of the gas,we know that low density and high temperature gas appears near the exits of the DRPG,while high density and low temperature gas appears at the wall near the breech.The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch.The 2D-IB-SPETC model can be used for prediction and improvement of experiments.
基金National Natural Science Foundation of China(Grant No.51777212).
文摘With the unique characteristics,electromagnetic launch technology is applicable to launch shipborne anti-torpedo torpedo(ATT).This paper aims to establish an analytic model to pre-evaluate the capture probability of the electromagnetic launched ATT.The mathematics model of the multi-stage coilgun and the trajectory of the ATT is established for analysis.The influence factors of the capture probability are analyzed respectively,including the entry point dispersion of the ATT and the position dispersion of the incoming torpedo.Adopting the advanced angle interception mode,the ATT search model is obtained according to the positional relationship,and the course error is synthetically calculated according to the differentiation of implicit function.A geometric method to calculate the integral boundaries of the probability density function is proposed,based on the relative motion of the ATT and the incoming target.To verify the proposed integral model,the digital simulation and comparison is conducted.The results reveal that the variation trends and the calculation value of the proposed analytic model are coincident with the statistic results from Monte Carlo method.And implications of the results regarding the analytic model are discussed.
文摘A 30 mm electrothermal-chemical(ETC) gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates(EGGR) of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient(dp/dt) is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW-1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley's modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient(dp/dt) and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.
文摘In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure from the muzzle)and the muzzle velocity are measured.Compared with the classical methods,the actual muzzle time is obtained by eliminating the ignition delay.The comparative analysis method is proposed with numerical simulations established by the transfer matrix method for multibody systems.The experiment results indicate that the proposed measurement system can effectively measure the actual muzzle time and reduce the error of classical methods,which match well with the simulation results showing the launch dynamics model is reliable and helpful for further analysis and design of the MLRS.
文摘An important problem in studying the sloped rocket launch is to determine the oscillations and their effects on the initial conditions of the rocket path.This phenomenon influences the stability of the launching device and the firing precision.It is assumed that the launching device and the moving rocket form a complex oscillating system that join together into a sum of rigid bodies bound by elastic elements(the vehicle chassis,the tilting platform and the rockets in the containers).The calculations of the launching device oscillations during the launch by numerical methods are presented.
文摘针对大深度环境水下发射技术需求,提出一种利用水压驱动两级提拉式水下新型发射方案。利用大深度环境高压水驱动两级活塞实现武器快速发射。建立武器出管过程动力学模型,开展高压水驱动方案原理验证试验,并与高压气体驱动方案进行了对比分析。研究结果表明:水压驱动与气体驱动方案的内弹道结果基本一致,高压水发射方案在大深度环境具有显著优势;加速度峰值出现在发射瞬时和级间转换过程,级间转换过程武器加速度存在显著的陡变现象;水下发射武器出管过程弹道预报结果得出,在发射水深100~500 m条件下,武器出管过程最大速度范围为7.4~15.3 m/s,最大加速度小于100 m/s 2;研究结果验证了水压驱动两级活塞式发射方案的可行性,为装置的进一步研制开发提供了设计依据。