A viscoelastic micromechanical model is presented to predict the dynamic modulus of asphalt concrete (AC) and investigate the effect of imperfect interface between asphalt mastic and aggregates on the overall viscoe...A viscoelastic micromechanical model is presented to predict the dynamic modulus of asphalt concrete (AC) and investigate the effect of imperfect interface between asphalt mastic and aggregates on the overall viscoelastic characteristics of AC. The linear spring layer model is introduced to simulate the interface imperfection. Based on the effective medium theory, the viscoelastic micromechanical model is developed by two equivalence processes. The present prediction is compared with available experimental data to verify the developed framework. It is found that the proposed model has the capability to predict the dynamic modulus of AC. Interface effect on the dynamic modulus of AC is discussed using the developed model. It is shown that the interfacial bonding strength has a significant influence on the global mechanical performance of AC, and that continued improvement in surface fimctionalization is necessary to realize the full potential of aggregates reinforcement.展开更多
Textile-reinforced concrete(TRC)is suitable to repair and reinforce concrete structures in harsh environments.The performance of the interface between TRC and existing concrete is an important factor in determining th...Textile-reinforced concrete(TRC)is suitable to repair and reinforce concrete structures in harsh environments.The performance of the interface between TRC and existing concrete is an important factor in determining the strengthening effect of TRC.In this paper,a double-sided shear test was performed to investigate the effects of the chloride dry-wet cycles on the average shear strength and slip at the interface between the TRC and existing concrete,also considering the existing concrete strength,bond length,textile layer and short-cut fiber arrangements.In addition,X-ray diffraction(XRD)technology was used to analyze the microscopic matter at the interface in the corrosive environment.The experimental results indicate that the interface performance between TRC and existing concrete would decrease with continued chloride dry-wet cycles.Compared with the specimen with a single layer of textile reinforcement,the specimens with two layers of textile with added PVA or AR-glass short-cut fibers could further improve the properties of the interface between the TRC layer and existing concrete.For the TRC with a single layer of textile,the average shear strength tended to decrease with increasing bond length.In addition,the strength grade of the existing concrete had a minor effect on the interface properties.展开更多
To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring art...To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring artificial boundary(VSAB) is adopted to simulate the radiation damping of their infinite foundations, and based on the Marc software, a simplified seismic motion input method is presented by the equivalent nodal loads. Finally, based on the practical engineering of a RCC gravity dam, effects of radiation damping and construction interfaces on the dynamic characteristics of dams are investigated in detail. Analysis results show that dynamic response of the RCC gravity dam significantly reduces about 25% when the radiation damping of infinite foundation is considered. Hot interfaces and the normal cold interfaces have little influence on the dynamic response of the RCC gravity dam.However, nonlinear fracture along the cold interfaces at the dam heel will occur under the designed earthquake if the cold interfaces are combined poorly. Therefore, to avoid the fractures along the construction interfaces under the potential super earthquakes,combination quality of the RCC layers should be significantly ensured.展开更多
New-old concrete composite system usually exists in concrete repairing structure.In the present work,series of experiments were carried out to investigate permeability and ion diffusion properties of new-old concrete ...New-old concrete composite system usually exists in concrete repairing structure.In the present work,series of experiments were carried out to investigate permeability and ion diffusion properties of new-old concrete composite by measuring 6-hour coulomb charge and chloride diffusivity.The interrelation among transport properties of new-old composites,new,and old concretes was also discussed.Results indicate that the permeability and chloride diffusivity of new-old concrete composite system closely interrelate to the corresponding new concrete and old concrete.The interfacial transition zone between new concrete and old concrete greatly influences the transport property of new-old concrete system.Compared with the corresponding new concrete and old concrete lower permeability and diffusivity values for the new-old concrete composites can be achieved by choosing suitable new concrete.It is possible to design the tailor-made new-old concrete composite system for repair given the transport property.展开更多
The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interfa...The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.展开更多
基金Project(51408173)supported by the National Natural Science Foundation of China
文摘A viscoelastic micromechanical model is presented to predict the dynamic modulus of asphalt concrete (AC) and investigate the effect of imperfect interface between asphalt mastic and aggregates on the overall viscoelastic characteristics of AC. The linear spring layer model is introduced to simulate the interface imperfection. Based on the effective medium theory, the viscoelastic micromechanical model is developed by two equivalence processes. The present prediction is compared with available experimental data to verify the developed framework. It is found that the proposed model has the capability to predict the dynamic modulus of AC. Interface effect on the dynamic modulus of AC is discussed using the developed model. It is shown that the interfacial bonding strength has a significant influence on the global mechanical performance of AC, and that continued improvement in surface fimctionalization is necessary to realize the full potential of aggregates reinforcement.
基金Project(2017XKZD09)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Textile-reinforced concrete(TRC)is suitable to repair and reinforce concrete structures in harsh environments.The performance of the interface between TRC and existing concrete is an important factor in determining the strengthening effect of TRC.In this paper,a double-sided shear test was performed to investigate the effects of the chloride dry-wet cycles on the average shear strength and slip at the interface between the TRC and existing concrete,also considering the existing concrete strength,bond length,textile layer and short-cut fiber arrangements.In addition,X-ray diffraction(XRD)technology was used to analyze the microscopic matter at the interface in the corrosive environment.The experimental results indicate that the interface performance between TRC and existing concrete would decrease with continued chloride dry-wet cycles.Compared with the specimen with a single layer of textile reinforcement,the specimens with two layers of textile with added PVA or AR-glass short-cut fibers could further improve the properties of the interface between the TRC layer and existing concrete.For the TRC with a single layer of textile,the average shear strength tended to decrease with increasing bond length.In addition,the strength grade of the existing concrete had a minor effect on the interface properties.
基金Projects(20120094110005,20120094130003)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProjects(51379068,51139001,51279052,51209077,51179066)supported by the National Natural Science Foundation of China+1 种基金Project(NCET-11-0628)supported by the Program for New Century Excellent Talents in University,ChinaProjects(201201038,201101013)supported by the Public Welfare Industry Research Special Fund Project of Ministry of Water Resources of China
文摘To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring artificial boundary(VSAB) is adopted to simulate the radiation damping of their infinite foundations, and based on the Marc software, a simplified seismic motion input method is presented by the equivalent nodal loads. Finally, based on the practical engineering of a RCC gravity dam, effects of radiation damping and construction interfaces on the dynamic characteristics of dams are investigated in detail. Analysis results show that dynamic response of the RCC gravity dam significantly reduces about 25% when the radiation damping of infinite foundation is considered. Hot interfaces and the normal cold interfaces have little influence on the dynamic response of the RCC gravity dam.However, nonlinear fracture along the cold interfaces at the dam heel will occur under the designed earthquake if the cold interfaces are combined poorly. Therefore, to avoid the fractures along the construction interfaces under the potential super earthquakes,combination quality of the RCC layers should be significantly ensured.
基金Project(2013CB036201)supported by the National Basic Research Program of ChinaProject(51178467)supported by National Natural Science Foundation of ChinaProject(NCET-10-0839)supported by Program for New Century Excellent Talents in University,China
文摘New-old concrete composite system usually exists in concrete repairing structure.In the present work,series of experiments were carried out to investigate permeability and ion diffusion properties of new-old concrete composite by measuring 6-hour coulomb charge and chloride diffusivity.The interrelation among transport properties of new-old composites,new,and old concretes was also discussed.Results indicate that the permeability and chloride diffusivity of new-old concrete composite system closely interrelate to the corresponding new concrete and old concrete.The interfacial transition zone between new concrete and old concrete greatly influences the transport property of new-old concrete system.Compared with the corresponding new concrete and old concrete lower permeability and diffusivity values for the new-old concrete composites can be achieved by choosing suitable new concrete.It is possible to design the tailor-made new-old concrete composite system for repair given the transport property.
基金Project(50578027) supported by the National Natural Science Foundation of China
文摘The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.