期刊文献+
共找到60,429篇文章
< 1 2 250 >
每页显示 20 50 100
Backstepping sliding mode control for uncertain strict-feedback nonlinear systems using neural-network-based adaptive gain scheduling 被引量:13
1
作者 YANG Yueneng YAN Ye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期580-586,共7页
A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain st... A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC. 展开更多
关键词 backstepping control sliding mode control(SMC) neural network(NN) strict-feedback system chattering decrease
在线阅读 下载PDF
响应面法结合深度神经网络优化刺五加果多糖提取工艺 被引量:3
2
作者 苏适 董立强 +3 位作者 黎莉 王双侠 王喜庆 张金凤 《包装与食品机械》 北大核心 2025年第2期66-74,共9页
为提高刺五加果多糖的提取率,提出基于Box-Behnken响应面法与深度神经网络模型(deep neural network,DNN)协同优化的微波辅助离子液体提取工艺。通过响应面设计,筛选微波功率、离子液体浓度、提取时间及料液比等参数,并构建二次回归模型... 为提高刺五加果多糖的提取率,提出基于Box-Behnken响应面法与深度神经网络模型(deep neural network,DNN)协同优化的微波辅助离子液体提取工艺。通过响应面设计,筛选微波功率、离子液体浓度、提取时间及料液比等参数,并构建二次回归模型;利用DNN模型解析多因素间非线性关系,优化工艺条件。结果表明,DNN模型得到的最优工艺条件为微波功率350 W、离子液体浓度0.6 mol/L、提取时间35 min、料液比1∶24(g/mL),多糖提取率为16.71%,高于响应面法优化的提取工艺结果。体外抗氧化试验显示,刺五加果多糖对羟基自由基、DPPH自由基和ABTS^(+)·自由基的半数抑制浓度(IC_(50))分别为2.36,2.05,2.47 mg/mL。研究为刺五加果在功能性食品及抗衰老保健品开发中的应用提供理论依据。 展开更多
关键词 刺五加果 多糖 工艺优化 响应面法 深度神经网络 抗氧化活性
在线阅读 下载PDF
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:4
3
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:1
4
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
图联邦学习:问题、方法与挑战 被引量:1
5
作者 王鑫 熊书博 孙凌云 《计算机科学》 北大核心 2025年第1期362-373,共12页
图作为一种高效、灵活、通用的数据结构,在多个学科领域得到了广泛应用。近年来,基于图的深度学习算法不断涌现,并在社交网络、生物信息学、推荐系统等领域取得显著成效。尽管公开的图数据量在增加,但高质量的数据往往分散在不同的数据... 图作为一种高效、灵活、通用的数据结构,在多个学科领域得到了广泛应用。近年来,基于图的深度学习算法不断涌现,并在社交网络、生物信息学、推荐系统等领域取得显著成效。尽管公开的图数据量在增加,但高质量的数据往往分散在不同的数据所有者手中。随着社会对数据隐私保护要求的提高,现有的图学习算法面临着许多挑战。图联邦学习作为一种有效的解决方案应运而生。文中系统回顾了图联邦学习领域近五年的研究进展,将该领域的核心问题划分为3个部分,并在结构上进行了垂直整合,在关系上进行了递进阐述,包括:1)原始图数据差异导致的结构异构性;2)图联邦特性导致的模型聚合问题;3)模型整体调优方面的挑战。针对每个问题,详细分析了代表性工作及其优缺点,并总结了图联邦学习领域的典型应用和未来挑战。 展开更多
关键词 联邦学习 图神经网络 图联邦学习 隐私计算
在线阅读 下载PDF
基于多域图神经网络的疾病预测模型 被引量:2
6
作者 罗熹 刘洋 安莹 《湖南大学学报(自然科学版)》 北大核心 2025年第4期124-134,共11页
电子病历数据类型多样以及时序不规则,现有的基于深度学习的方法在特征学习的过程中大多无法同时兼顾对不同类型临床数据间静态关联和就诊记录间动态时序依赖的有效捕获.针对该问题,本文提出了一种基于多域图神经网络的疾病预测模型.该... 电子病历数据类型多样以及时序不规则,现有的基于深度学习的方法在特征学习的过程中大多无法同时兼顾对不同类型临床数据间静态关联和就诊记录间动态时序依赖的有效捕获.针对该问题,本文提出了一种基于多域图神经网络的疾病预测模型.该方法首先利用一个结合编码级注意力和时间感知LSTM的时序特征学习模块获得患者每次就诊的初始特征表示.然后,根据就诊序列中不同就诊间的相关性和时间间隔信息分别构建了一个就诊亲和图和一个就诊时序图,并通过图卷积神经网络从图中挖掘就诊记录间的静态语义关联和动态时序依赖.最后,利用一个基于自注意力机制的多域特征融合模块将时序特征和语义关联特征结合起来得到最终的患者融合特征表示,用于患者未来的疾病预测.在两个真实临床数据集上的实验结果表明,本文方法超过其他现有的方法获得了更高的预测准确性. 展开更多
关键词 电子病历 疾病预测 图神经网络 注意力机制
在线阅读 下载PDF
基于GA-LSTM的桥梁缆索腐蚀钢丝力学性能预测模型 被引量:5
7
作者 缪长青 吕悦凯 万春风 《东南大学学报(自然科学版)》 北大核心 2025年第1期140-145,共6页
为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经... 为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经元数量、窗口大小4个超参数,以预测不同腐蚀特征状态下钢丝的力学性能。将其与传统LSTM和GA-反向传播模型的预测结果进行比较。结果表明,GA-LSTM模型具有更高的预测精度和鲁棒性。在屈服强度与极限强度预测效果方面,均方根误差(root mean square error, RMSE)、平均绝对误差(mean absolute error, MAE)、决定系数分别提高约44%~61%、43%~57%、35%~92%。在屈服应变与极限应变预测效果方面,RMSE、MAE、决定系数分别提高约0~46%、7%~49%、12%~229%。所建立的模型可以作为一个有用的工具支持桥梁缆索腐蚀安全性评估工作。 展开更多
关键词 桥梁缆索腐蚀钢丝 力学性能预测 时序预测 神经网络 遗传算法 超参数优化
在线阅读 下载PDF
计及铁心非线性的变压器空间动态磁场加速计算方法 被引量:1
8
作者 司马文霞 孙佳琪 +3 位作者 杨鸣 邹德旭 彭庆军 王劲松 《电工技术学报》 北大核心 2025年第5期1559-1574,共16页
快速获得变压器空间磁场动态分布是构建变压器数字孪生体的基础之一,然而现有快速计算方法难以快速、准确地获得铁心饱和工况下的磁场分布特性。因此,该文提出了计及铁心非线性的变压器空间动态磁场加速计算方法。首先,构建变压器电磁... 快速获得变压器空间磁场动态分布是构建变压器数字孪生体的基础之一,然而现有快速计算方法难以快速、准确地获得铁心饱和工况下的磁场分布特性。因此,该文提出了计及铁心非线性的变压器空间动态磁场加速计算方法。首先,构建变压器电磁场路耦合仿真模型,对关键变量进行参数化扫描,仿真获得不同非线性工况下的大量磁场数据,构建涉及铁心非线性工况的主磁通和漏磁通数据集;其次,提出融合卷积神经网络(CNN)和长短期记忆网络(LSTM)的双分支深度学习模型,训练提取磁场数据的空间和时间特征,解决主、漏磁通差异大造成的模型训练难题;最后,利用模型获得输入电压、电流与内部空间磁场分布的非线性映射关系,实现空间动态磁场的加速计算,为变压器数字孪生体的构建提供了快速获得磁场数据的方法。 展开更多
关键词 非线性 卷积神经网络 长短期记忆网络 磁场 加速计算
在线阅读 下载PDF
基于改进卷积神经网络的风电机组叶片覆冰诊断方法研究 被引量:2
9
作者 邢作霞 张玥 +1 位作者 郭珊珊 张超 《太阳能学报》 北大核心 2025年第3期661-667,共7页
针对风电机组叶片覆冰影响机组运行安全和降低发电量的问题,提出一种基于极端梯度提升算法和麻雀搜索算法优化卷积神经网络的风电机组叶片覆冰诊断方法。首先,利用基于极端梯度提升算法计算实际机组监控和数据采集系统(SCADA)数据的特... 针对风电机组叶片覆冰影响机组运行安全和降低发电量的问题,提出一种基于极端梯度提升算法和麻雀搜索算法优化卷积神经网络的风电机组叶片覆冰诊断方法。首先,利用基于极端梯度提升算法计算实际机组监控和数据采集系统(SCADA)数据的特征权重,筛除冗余特征变量,降低诊断模型的复杂度、减少诊断时间;再利用卷积神经网络模型对筛选后SCADA数据进行特征提取建立叶片覆冰诊断分类模型;最后,利用麻雀搜索算法对诊断模型中的超参数寻优,提高诊断模型的准确率。实验结果表明提出的方法对叶片覆冰的诊断准确率达到98%,相比于长短期记忆网络、K近邻算法等分类模型诊断准确率更高。 展开更多
关键词 风电机组 故障诊断 叶片覆冰 神经网络 麻雀搜索算法
在线阅读 下载PDF
基于通道自注意图卷积网络的运动想象脑电分类实验 被引量:1
10
作者 孟明 张帅斌 +2 位作者 高云园 佘青山 范影乐 《实验技术与管理》 北大核心 2025年第2期73-80,共8页
该文将运动想象脑电分类任务设计成应用型教学实验。针对传统图卷积网络(graph convolutional neural networks,GCN)无法建模脑电通道间动态关系问题,提出一种融合通道注意机制的多层图卷积网络模型(channel self-attention multilayer ... 该文将运动想象脑电分类任务设计成应用型教学实验。针对传统图卷积网络(graph convolutional neural networks,GCN)无法建模脑电通道间动态关系问题,提出一种融合通道注意机制的多层图卷积网络模型(channel self-attention multilayer GCN,CAMGCN)。首先,CAMGCN计算脑电信号各个通道间的皮尔逊相关系数进行图建模,并通过通道位置编码模块学习通道间关系。然后将得到的时域和频域特征分量通过通道自注意图嵌入模块进行图嵌入,得到图数据。最后通过多级GCN模块提取并融合多层次拓扑信息,得出分类结果。CAMGCN深化了模型在自适应学习通道间动态关系的能力,并在结构方面提高了自注意机制与图数据的适配性。该模型在BCI Competition-Ⅳ2a数据集上的准确率达到83.8%,能够有效实现对运动想象任务的分类。该实验有助于增进学生对于深度学习和脑机接口的理解,培养创新思维,提高科研素质。 展开更多
关键词 脑机接口 脑电图 图卷积网络 注意力机制
在线阅读 下载PDF
基于残差分组卷积神经网络和多级注意力机制的源荷极端场景辨识方法 被引量:1
11
作者 郭红霞 李渊 +2 位作者 陈凌轩 王建学 马骞 《电网技术》 北大核心 2025年第2期459-469,I0019-I0024,共17页
为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方... 为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方法。首先,将风电、光伏和负荷序列进行重塑,并在通道维度上拼接;然后,基于分组卷积和深度残差网络,提取场景的时序特征和源荷场景之间的耦合特征;其次,模型内部嵌入通道注意力机制和多头注意力机制,以赋予重要特征更大的权重,并对场景进行分类;此外,采用改进损失函数解决训练样本中数据集不均衡的问题;最后,基于历史数据集进行验证。验证结果表明,所提方法能够对场景进行有效的分类,可以从历史场景中识别出具有高保供或高消纳风险的源荷极端场景。 展开更多
关键词 极端场景辨识 残差神经网络 分组卷积 注意力机制 源荷不确定性
在线阅读 下载PDF
多因素土壤墒情预测模型DA-LSTM-soil构建 被引量:1
12
作者 车银超 郑光 +3 位作者 熊淑萍 张明天 马新明 席磊 《河南农业大学学报》 北大核心 2025年第4期698-710,共13页
【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网... 【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网络结构,分别引入特征和时间两个注意力模块。利用河南省许昌市2020—2021年冬小麦生长过程中物联网监测站的气象、土壤数据集,对DA-LSTM-soil模型进行训练和测试。同时,利用DA-LSTM-soil模型对河南省4个不同土壤类型的小麦种植区的数据集进行预测。【结果】对比试验表明,相较于LSTM、CNN-LSTM、CNN-LSTM-attention、LSTM-attention等深度学习模型,DA-LSTM-soil模型在S_(RME)、S_(ME)、A_(ME)、R^(2)评价指标更优,分别达到0.1764、0.0311、0.0466、0.9938。消融试验显示,时间注意力对模型性能的提升高于特征注意力。对时间步的试验显示,用过往3000 min的数据进行预测时,模型性能最佳;模型精度随着预测时长的增加有所下降,然而在5000 min内,决定系数R2仍保持在0.7以上。【结论】利用注意力机制,DA-LSTMsoil模型在Encoder前计算不同气象和土壤因素对墒情影响的权重,在Decoder前计算数据的时序对墒情预测的权重,双阶段注意力机制在特征提取和权重分配方面的作用显著,使模型具有更好的预测性能和泛化能力,可以为田块尺度麦田土壤墒情预测提供技术依据。 展开更多
关键词 麦田 土壤墒情预测 时序数据 长短期记忆网络 注意力机制
在线阅读 下载PDF
融合梯度预测和无参注意力的高效地震去噪Transformer 被引量:1
13
作者 高磊 乔昊炜 +2 位作者 梁东升 闵帆 杨梅 《计算机科学与探索》 北大核心 2025年第5期1342-1352,共11页
压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会... 压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会导致细节信息的丢失。针对地震数据去噪问题,提出了一种融合梯度预测和无参注意力的高效Transformer模型(ETGP)。引入多头“转置”注意力来代替传统的多头注意力,它能在通道间计算注意力来表示全局信息,缓解了传统多头注意力复杂度过高的问题。提出了无参注意力前馈神经网络,它能同时考虑空间和通道维度计算注意力权重,而不向网络增加参数。设计了梯度预测网络以提取边缘信息,并将信息自适应地添加到并行Transformer的输入中,从而获得高质量的地震数据。在合成数据和野外数据上进行了实验,并与经典和先进的去噪方法进行了比较。结果表明,ETGP去噪方法不仅能更有效地压制随机噪声,并且在弱信号保留和同相轴连续性方面具有显著优势。 展开更多
关键词 地震数据去噪 卷积神经网络 TRANSFORMER 注意力模块 梯度融合
在线阅读 下载PDF
一种适用于混合三端直流输电线路的故障定位方法 被引量:1
14
作者 高淑萍 杨莉莉 +2 位作者 武心宇 周晋宇 宋国兵 《西安交通大学学报》 EI CAS 北大核心 2025年第1期37-46,共10页
针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉... 针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉克变换对其解耦,获取故障电流的线模分量;其次,对得到的线模分量进行变分模态分解(VMD),得到多个本征模态函数(IMF)分量,选取特征信息最丰富的IMF分量作为VMD-CNN模型的输入;然后,利用高效的分类模型支持向量机(SVM)判别故障发生的区域,将提取到的IMF分量作为SVM输入进行训练学习,可以准确判断出故障发生区域;最后,搭建VMD-CNN模型进行故障定位,挖掘出行波信号中蕴藏的故障信息,同时通过麻雀搜索算法优化CNN中的超参数,实现混合三端直流输电线路的精确定位。仿真结果表明:过渡电阻为100Ω,不同故障位置情况下的定位相对误差均在0.17%以内;故障位置为460 km,不同过渡电阻情况下的定位相对误差均在0.25%以内;过渡电阻为50Ω,不同故障类型情况下的相对误差均在0.3%以内。所提方法能够提升不同故障位置、过渡电阻和故障类型下的定位准确性。 展开更多
关键词 混合三端直流输电 故障定位 变分模态分解 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
基于短时随机充电数据和优化卷积神经网络的锂电池健康状态估计 被引量:1
15
作者 申江卫 折亦鑫 +4 位作者 舒星 刘永刚 魏福星 夏雪磊 陈峥 《储能科学与技术》 北大核心 2025年第4期1585-1595,共11页
用户充电过程较强的随机性,导致很难获得完整且固定的充电段用于精确表征电池健康状态的变化。针对充电行为的无序性,提出了一种基于随机健康指标和卷积神经网络的电池健康状态估计方法。对锂电池的原始充电电压时序数据进行分割作为随... 用户充电过程较强的随机性,导致很难获得完整且固定的充电段用于精确表征电池健康状态的变化。针对充电行为的无序性,提出了一种基于随机健康指标和卷积神经网络的电池健康状态估计方法。对锂电池的原始充电电压时序数据进行分割作为随机充电数据,使用单一卷积神经网络架构从中自适应提取老化特征,并采用蜣螂优化算法对其参数寻优,建立了多阶段模型。仅使用短时随机原始充电电压数据即可实现电池健康状态估计,且有效适用于不同充电模式和充电速率。实验测试验证结果表明,使用连续5 s(100个数据点)的原始电压时序数据,在恒流-恒压充电模式下,锂电池健康状态估计结果平均绝对误差小于2.07%,在多阶段恒流充电模式下,锂电池健康状态估计结果平均绝对误差小于1.22%。 展开更多
关键词 健康状态 随机充电 数据分割 卷积神经网络 锂离子电池
在线阅读 下载PDF
基于改进PID和扩张状态观测器的温度控制算法 被引量:1
16
作者 吴敏 刘莎 +1 位作者 翟力欣 田光兆 《现代电子技术》 北大核心 2025年第7期112-118,共7页
针对传统温度控制系统控温时间长、误差大的问题,提出一种基于改进PID和扩张状态观测器的温度控制算法。首先,建立了结合BP神经网络的PID参数自调整温度控制模型,并对BP神经网络的输入层进行改进,将更多的先验信息加入输入向量,用于训... 针对传统温度控制系统控温时间长、误差大的问题,提出一种基于改进PID和扩张状态观测器的温度控制算法。首先,建立了结合BP神经网络的PID参数自调整温度控制模型,并对BP神经网络的输入层进行改进,将更多的先验信息加入输入向量,用于训练BP神经网络,以减少系统的不确定性;其次,通过增加状态观测器来估计系统扰动,针对控制系统的扰动进行补偿,并在仿真实验中验证方法的有效性;最后,根据仿真实验结果显示,与参考文献中提及的算法相比,系统的上升时间减少了19.7%,超调量减少了81.7%,调节时间减少了41.7%,静态误差减少了73.0%。 展开更多
关键词 BP神经网络 PID控制 扩张状态观测器 温度控制 参数自调整 系统扰动
在线阅读 下载PDF
考虑季节性与趋势特征的光伏功率预测模型研究 被引量:1
17
作者 王东风 李青博 +1 位作者 张博洋 黄宇 《太阳能学报》 北大核心 2025年第3期348-356,共9页
针对光伏功率预测中未充分考虑光伏功率季节性与趋势特征的问题,提出一种基于Neural-Prophet(NP)与深度神经网络的光伏功率预测方法。首先,通过互信息法筛选出影响光伏功率的主要因素,利用NP模型对光伏功率建模得到光伏功率的季节性与... 针对光伏功率预测中未充分考虑光伏功率季节性与趋势特征的问题,提出一种基于Neural-Prophet(NP)与深度神经网络的光伏功率预测方法。首先,通过互信息法筛选出影响光伏功率的主要因素,利用NP模型对光伏功率建模得到光伏功率的季节性与趋势特征,将季节性与趋势特征及主要影响因素作为模型输入。其次,采用改进残差网络(ResNet)和双向门控循环单元(BiGRU)建立NP-ResNet-BiGRU光伏功率预测模型并完成光伏功率预测。利用春夏秋冬四季的数据进行实验,结果显示相较于其他方法,所提方法的MAE至少提升7.44%,RMSE至少提升4.62%。 展开更多
关键词 光伏发电 预测 神经网络 残差网络 Neural-Prophet
在线阅读 下载PDF
基于多模态射频信号融合的粮食水分检测 被引量:1
18
作者 杨卫东 郭思君 +2 位作者 段珊珊 胡鹏明 单少伟 《中国农机化学报》 北大核心 2025年第2期132-138,共7页
水分检测是粮食存储和贸易中不可或缺的一环,利用各种射频传感技术可以实现无损、快速地粮食水分检测。然而,现有方案都是基于单一种类射频信号开发的,针对不同射频信号需要训练对应检测模型,人力成本增加。基于此,提出一种融合多模态... 水分检测是粮食存储和贸易中不可或缺的一环,利用各种射频传感技术可以实现无损、快速地粮食水分检测。然而,现有方案都是基于单一种类射频信号开发的,针对不同射频信号需要训练对应检测模型,人力成本增加。基于此,提出一种融合多模态射频信号的粮食水分检测方法RF—Grain。首先,针对多径环境和硬件缺陷引起的噪声问题,提出一种WiFi信道状态信息(CSI)数据预处理方法;其次,提出一种域对抗神经网络模型,用以消除不同类型射频信号提取的粮食水分特征分布差异;最后,设计使用3种不同射频传感技术进行粮食水分检测的试验,以卷积神经网络作为对比,对所提出方法的性能进行评估,并与现有方法进行对比分析。试验表明,所提出方法能够有效检测5种不同含水率的粮食样品,总体准确率为分别为98.87%、96.22%和96.56%,优于传统的卷积神经网络,具有准确率高、泛化性好等优点,为粮食水分无损检测研究提供有力的技术支撑。 展开更多
关键词 粮食 水分含量检测 射频传感 多模态 域对抗神经网络
在线阅读 下载PDF
VMD-小波去噪与双线性ResNet结合坐标注意力机制的水声信号调制识别方法 被引量:1
19
作者 周锋 韦少帅 乔钢 《哈尔滨工程大学学报》 北大核心 2025年第7期1357-1366,共10页
针对复杂的水声环境噪声干扰导致提取信号特征不明显、水声通信调制信号类内差异大、类间相似导致调制识别准确率低的问题,本文提出一种基于去噪与改进的ResNet网络调制识别方法。运用变分模态分解与小波相结合的去噪方法,保留了低相关... 针对复杂的水声环境噪声干扰导致提取信号特征不明显、水声通信调制信号类内差异大、类间相似导致调制识别准确率低的问题,本文提出一种基于去噪与改进的ResNet网络调制识别方法。运用变分模态分解与小波相结合的去噪方法,保留了低相关性模态分量含有的有效信息;运用双线性ResNet18使网络具备捕获区分性强的局部信息;引入坐标注意力机制,使网络不仅能关注通道信息也能关注图像的空间信息。仿真结果表明:本文降噪方法相关系数更高、均方根误差均降低了20%;以0 dB条件为例,本文改进网络准确率相比于ResNet提升了8%,7种调制信号都达到了95%以上,调相调制准确率也达到了90%。 展开更多
关键词 水声通信 调制识别 残差网络 去噪 双线性模型 注意力机制 神经网络 变分模态
在线阅读 下载PDF
车联网边缘计算环境下基于流量预测的高效任务卸载策略研究 被引量:1
20
作者 许小龙 杨威 +4 位作者 杨辰翊 程勇 齐连永 项昊龙 窦万春 《电子学报》 北大核心 2025年第2期329-343,共15页
车联网(Internet of Vehicles,IoV)边缘计算通过将移动边缘计算和车联网相结合,实现了车辆计算任务从云服务器向边缘服务器的下沉,从而有效降低了车联网服务的响应时延.然而,车联网中不规则的交通流时空分布会导致边缘服务器计算负载不... 车联网(Internet of Vehicles,IoV)边缘计算通过将移动边缘计算和车联网相结合,实现了车辆计算任务从云服务器向边缘服务器的下沉,从而有效降低了车联网服务的响应时延.然而,车联网中不规则的交通流时空分布会导致边缘服务器计算负载不均衡,进而影响车联网服务的实时响应.为此,本文提出了一种车联网边缘计算环境下基于流量预测的高效任务卸载策略.具体而言,首先设计了能充分挖掘路段间连通性和距离信息的切比雪夫图加权网络(Chebyshev graph Weighted Network,ChebWN)进行交通流量预测.然后,设计了一种基于深度强化学习的二元任务卸载方法(DRL-based Binary task Offloading Algorithm,DBOA),该算法将二元任务卸载的决策过程分为两个阶段,即首先通过深度强化学习得到卸载策略,再通过一维双端查找算法确定最大化总计算速率的时间片分配方案,降低了决策过程的复杂度.最后,通过大量的对比实验验证了ChebWN在预测交通流量方面的准确性,以及DBOA在提升车联网服务响应速度方面的优越性. 展开更多
关键词 移动边缘计算 深度强化学习 车联网 图神经网络(GNN) 任务卸载
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部