期刊文献+
共找到2,303篇文章
< 1 2 116 >
每页显示 20 50 100
An efficient and accurate numerical method for simulating close-range blast loads of cylindrical charges based on neural network
1
作者 Ting Liu Changhai Chen +2 位作者 Han Li Yaowen Yu Yuansheng Cheng 《Defence Technology(防务技术)》 2025年第2期257-271,共15页
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim... To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures. 展开更多
关键词 Close-range air blast load Cylindrical charge Numerical method neural network CEL method CONWEP model
在线阅读 下载PDF
基于CNN-Swin Transformer Network的LPI雷达信号识别 被引量:1
2
作者 苏琮智 杨承志 +2 位作者 邴雨晨 吴宏超 邓力洪 《现代雷达》 CSCD 北大核心 2024年第3期59-65,共7页
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transforme... 针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别。仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性。 展开更多
关键词 低截获概率雷达 信号调制方式识别 Swin Transformer网络 卷积神经网络 时频分析
在线阅读 下载PDF
Method of neural network modulation recognition based on clustering and Polak-Ribiere algorithm 被引量:4
3
作者 Faquan Yang Zan Li +2 位作者 Hongyan Li Haiyan Huang Zhongxian Pan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期742-747,共6页
To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is ... To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition. 展开更多
关键词 clustering algorithm feature extraction algorithm of Polak-Ribiere neural network (nn modulation recognition.
在线阅读 下载PDF
基于IPSO-BPNN的电机控制方法研究 被引量:1
4
作者 梁策 张兵 朱建阳 《机床与液压》 北大核心 2025年第7期81-87,共7页
永磁同步电机是一个典型的非线性多变量强耦合系统,会受外部扰动、参数摄动和磁场非线性等因素的影响。针对这一问题,提出一种使用改进粒子群算法优化BP神经网络的PID控制器(IPSO-BPNN-PID)。通过引入自适应变异与随机权重对粒子群算法... 永磁同步电机是一个典型的非线性多变量强耦合系统,会受外部扰动、参数摄动和磁场非线性等因素的影响。针对这一问题,提出一种使用改进粒子群算法优化BP神经网络的PID控制器(IPSO-BPNN-PID)。通过引入自适应变异与随机权重对粒子群算法进行优化,以提升算法的全局搜索能力与收敛速度。利用IPSO算法优化神经网络的初始权值,提升了神经网络的学习速度;并结合神经网络的非线性逼近能力,对PID进行在线调节,以提高PID的响应速度和精度。建立PMSM双闭环调速系统,并采用优化后的IPSO-BPNN算法对PID控制器参数进行在线整定。结果表明:与标准粒子群算法相比,改进后的粒子群算法适应度更佳,收敛速度比标准PSO算法快24%;IPSO-BPNN-PID控制器的平均响应速度分别比PID控制器和BPNN-PID控制器提高了53.57%、19.77%,平均超调量比BPNN-PID控制器低41.67%,表明提出的IPSO-BPNN-PID控制器显著提升了PMSM驱动系统的响应速度和动态抗扰动能力等性能。 展开更多
关键词 永磁同步电机 粒子群算法 神经网络控制器 电机控制方法
在线阅读 下载PDF
The Complex System Modeling Method Based on Uniform Design and Neural Network 被引量:1
5
作者 Zhang Yong(Beijing Simulation Center, P.O.Box 142-23, Beijing 100854, P.R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第4期27-36,共10页
In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the model... In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively. 展开更多
关键词 Modeling method Uniform design neural network Complex system Simulation.
在线阅读 下载PDF
基于GNN和ISPH耦合方法的波浪与结构物相互作用数值模拟研究
6
作者 张宁波 倪宝玉 +2 位作者 薛彦卓 武奇刚 袁广宇 《力学学报》 北大核心 2025年第4期816-828,共13页
波浪与结构物相互作用的研究因其在海洋结构物设计、操作及安全性方面的关键性作用而受到广泛关注.作为一种无网格数值方法,不可压缩光滑粒子流体动力学(incompressible smoothed particle hydrodynamics,ISPH)方法正逐渐成为研究波浪... 波浪与结构物相互作用的研究因其在海洋结构物设计、操作及安全性方面的关键性作用而受到广泛关注.作为一种无网格数值方法,不可压缩光滑粒子流体动力学(incompressible smoothed particle hydrodynamics,ISPH)方法正逐渐成为研究波浪与结构相互作用问题的潜力工具.在传统的ISPH方法中,压力是通过求解压力泊松方程(pressure Poisson equation,PPE)获得的,这是整个计算过程最为耗时的部分.采用一种图神经网络(graph neural network,GNN)与ISPH相结合的耦合方法(ISPH_GNN)对波浪与结构物相互作用展开数值模拟研究.在ISPH_GNN中,GNN模型用于预测流体压力,取代了传统ISPH方法中的PPE求解过程.文章的一项贡献是揭示了基于相对简单算例生成的数据训练的GNN模型可以有效地应用于相对更复杂的波浪与结构物相互作用问题.具体而言,本文采用基于溃坝和液舱晃荡算例数据训练而成的GNN模型,并将其与ISPH方法相结合,构建了ISPH_GNN方法,以模拟不同的波浪与结构相互作用问题,包括孤立波冲击阶梯结构、规则波冲击水下梯形结构物和规则波与浮式箱体的相互作用.仿真结果显示,ISPH_GNN在这些不同场景下均能提供令人满意的模拟结果,展现了其在波浪与结构相互作用问题上的良好泛化能力.文章的另一项重要贡献在于,与传统ISPH方法相比,ISPH_GNN在取得相似甚至略高计算精度的同时,显著提升了压力预测的计算效率,尤其是在处理大规模粒子数的波浪-结构物相互作用仿真时.例如,在包含130万粒子的模拟工况下,ISPH_GNN的压力预测速度提升了多达93倍.研究结果突显了ISPH_GNN方法在波浪-结构物相互作用仿真中的巨大潜力,可为海洋工程提供一种更具可扩展性和计算高效性的仿真工具. 展开更多
关键词 波浪与结构物相互作用 不可压缩光滑粒子流体动力学 图神经网络 耦合方法 压力泊松方程 压力 预测
在线阅读 下载PDF
Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools 被引量:4
7
作者 Nam?k KILI? Blent EKICI Selim HARTOMACIOG LU 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第2期110-122,共13页
Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studi... Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy. 展开更多
关键词 人工神经网络 有限元法 穿透深度 性能测定 高速冲击 有限元模拟 FEM模拟 工具
在线阅读 下载PDF
基于回弹法预测岩石单轴抗压强度的MLP-ANN模型
8
作者 李明 窦斌 +4 位作者 朴昇昊 马云龙 王帅 孙左帅 王祥 《地质科技通报》 北大核心 2025年第1期164-174,共11页
岩石单轴抗压强度是岩土工程中的重要参数,合理确定其数值对工程设计至关重要。本文提出了一种基于多层感知机的人工神经网络(MLP-ANN)模型,用于预测岩石单轴抗压强度。该模型以岩性、节理面、施密特锤回弹高度和纵波波速为输入参数,采... 岩石单轴抗压强度是岩土工程中的重要参数,合理确定其数值对工程设计至关重要。本文提出了一种基于多层感知机的人工神经网络(MLP-ANN)模型,用于预测岩石单轴抗压强度。该模型以岩性、节理面、施密特锤回弹高度和纵波波速为输入参数,采用最大最小归一化进行参数标准化,并通过k折交叉验证提高模型的泛化能力。为优化模型性能,文章探讨了神经元数量、数据分割比例和激活函数对预测结果的影响。经对比验证,研究确定了最优模型配置:神经元数量为8,训练集与测试集比例为8∶2,激活函数选用Tanh函数。模型预测值与实际值对比分析结果表明,最优模型的平均绝对误差为3.500 MPa,均方根误差为5.836 MPa。结果表明,该模型预测误差较小,预测准确率较高,具有较好的实用性。 展开更多
关键词 单轴抗压强度 施密特锤实验 人工神经网络 模型评价 回弹法
在线阅读 下载PDF
基于HGNN和多尺度特征融合的弱监督人群计数方法
9
作者 李智 苗壮壮 杨连报 《现代电子技术》 北大核心 2025年第14期129-136,共8页
人群计数作为一项关键技术,在公共安全、城市规划以及交通管理等多个领域发挥着至关重要的作用。全监督计数方法要求对行人进行精确的点对点标注,这不仅耗费大量的人力资源,而且需要昂贵的物质资源。相比之下,弱监督学习方法仅需要计数... 人群计数作为一项关键技术,在公共安全、城市规划以及交通管理等多个领域发挥着至关重要的作用。全监督计数方法要求对行人进行精确的点对点标注,这不仅耗费大量的人力资源,而且需要昂贵的物质资源。相比之下,弱监督学习方法仅需要计数级别的注释,有效地解决了这一问题。然而,现有弱监督人群计数往往忽略了人群图像内部的密度分布问题,无法达到与全监督人群计数方法相似的计数性能。为了解决该问题,提出一种基于HGNN和多尺度特征融合的弱监督人群计数方法。利用超图挖掘人群区域内在的关联关系,并设计了一个低分辨率的多尺度特征融合模块来聚合多尺度的行人特征。在4个著名的基准人群计数数据集上进行了实验,结果表明,与现有的弱监督方法相比,所提方法的MAE提高了2.2%,RMSE值仅与当下最优方法相差3.9。此外,在昆明5号地铁线的站台视频进行了实际测试,验证了该方法能够实现高准确度的人群数量估计。 展开更多
关键词 人群计数 弱监督学习方法 多尺度特征 超图神经网络 特征映射 Swin Transformer
在线阅读 下载PDF
基于区间Ⅱ型FNN的MSWI过程炉膛温度控制 被引量:2
10
作者 汤健 田昊 +1 位作者 夏恒 乔俊飞 《北京工业大学学报》 北大核心 2025年第2期157-172,共16页
针对城市固废焚烧(municipal solid waste incineration,MSWI)过程的炉膛温度难以实现有效控制的问题,提出基于区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network,IT2FNN)的炉膛温度控制方法。首先,进行炉膛温度控制特性分析... 针对城市固废焚烧(municipal solid waste incineration,MSWI)过程的炉膛温度难以实现有效控制的问题,提出基于区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network,IT2FNN)的炉膛温度控制方法。首先,进行炉膛温度控制特性分析以确定对其产生影响的关键操作变量;然后,根据上述操作变量基于线性回归决策树(linear regression decision tree,LRDT)建立多入单出(multiple-input single-output,MISO)炉膛温度模型;最后,构建具有自适应参数学习的IT2FNN控制器,并证明其稳定性。在MSWI过程数据集上构建模型并进行控制,实验结果验证了所提方法的有效性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) 炉膛温度控制 线性回归决策树(linear regression decision tree LRDT) 区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network IT2Fnn) 梯度下降法 李雅普诺夫稳定性分析
在线阅读 下载PDF
基于CNN-LSTM风光荷预测的主动配电网双层扩展规划方法
11
作者 朱夏 陈颂 +1 位作者 袁明瀚 刘扬洋 《高压电器》 北大核心 2025年第5期218-227,共10页
随着大量可再生能源接入配电网,由于其出力的不确定性,需要对配电网进行扩展规划。为此,首先提出一种基于卷积神经网络与长短期记忆网络方法预测风光荷出力,然后构建主动配电网双层扩展规划模型。上层规划模型,以年综合成本最低为优化目... 随着大量可再生能源接入配电网,由于其出力的不确定性,需要对配电网进行扩展规划。为此,首先提出一种基于卷积神经网络与长短期记忆网络方法预测风光荷出力,然后构建主动配电网双层扩展规划模型。上层规划模型,以年综合成本最低为优化目标,同时考虑线路的改造升级与各项成本。下层运行模型,以年综合运行成本最低与节点电压偏移量最小为优化目标,考虑运行状况、分布式电源与储能的规划。在经过上下层关联建模后,将双层模型转化为多目标优化问题,然后采用归一化法向约束法进行求解,以获得分布均匀的帕累托前沿,最后通过算例验证了方法的有效性。 展开更多
关键词 主动配电网 卷积神经网络 长短期记忆网络 双层规划模型 归一化法向约束法
在线阅读 下载PDF
数据不完备下基于CNN-GRU神经网络的地铁基坑变形预测方法研究
12
作者 周意 王章琼 +3 位作者 邹原耕 蔡永辉 徐晓雅 赵歧林 《城市轨道交通研究》 北大核心 2025年第6期32-36,53,共6页
[目的]为应对地铁基坑变形监测数据不完备导致的预测滞后和精度下降问题,提出一种基于CNN-GRU神经网络(卷积神经网络-门控循环单元神经网络)的基坑变形预测方法,并对此方法进行验证。[方法]利用基坑不完备变形监测数据和缺失监测点附近... [目的]为应对地铁基坑变形监测数据不完备导致的预测滞后和精度下降问题,提出一种基于CNN-GRU神经网络(卷积神经网络-门控循环单元神经网络)的基坑变形预测方法,并对此方法进行验证。[方法]利用基坑不完备变形监测数据和缺失监测点附近点位监测数据构建数据样本集,输入CNN模型中,完成缺失数据的填补修复,得到完整连续的基坑变形监测数据。利用小波分解提取变形监测数据中低频趋势分量和高频误差分量,利用GRU神经网络模型和ARMA(自回归滑动平均)模型分别对低频趋势分量和噪声分量进行预测,再将预测结果合并得到最终变形预测结果。结合南京某地铁车站基坑工程案例,对该方法的有效性进行了验证。[结果及结论]采用基于CNN-GRU神经网络的基坑变形预测方法对缺失率达到18.5%和10.1%的基坑变形数据修复后进行预测时,预测误差分别为1.9266%和1.2746%,预测精度分别提高了35%和6%,可以看出该方法的数据修复能力表现良好,数据修复可靠度较高。对比GA-BP神经网络预测方法和LSTM预测方法,该方法的预测精度提升了1倍以上,且较好解决了预测滞后的问题,预测精度能够满足实际工程需要。 展开更多
关键词 地铁 基坑变形预测方法 Cnn-GRU神经网络 数据不完备
在线阅读 下载PDF
基于Lobatto方法和Legendre多项式的PINN求解微分代数方程
13
作者 赖帅 唐卷 +1 位作者 梁锟 陈佳盛 《计算机应用》 北大核心 2025年第3期911-919,共9页
当前求解微分代数方程(DAE)的神经网络方法基本都采用数据驱动策略,需要大量的数据集,因此存在对神经网络的结构和参数选择敏感、求解结果精度低、稳定性差等问题。针对这些问题,提出一种基于Lobatto方法和Legendre多项式的物理信息神... 当前求解微分代数方程(DAE)的神经网络方法基本都采用数据驱动策略,需要大量的数据集,因此存在对神经网络的结构和参数选择敏感、求解结果精度低、稳定性差等问题。针对这些问题,提出一种基于Lobatto方法和Legendre多项式的物理信息神经网络(LL-PINN)。首先,基于离散型物理信息神经网络(PINN)的计算框架,结合LobattoⅢA方法求解DAE高精度和高稳定性的优点,将DAE的物理信息嵌入LobattoⅢA时间迭代格式中,并使用PINN对该时间迭代进行近似数值求解;其次,采用单隐藏层的神经网络结构,利用勒让德多项式展开项的逼近能力,应用这些多项式作为激活函数来简化网络模型调整的过程;最后,采用时间区域分解方案构建网络模型,即对每个等分的子时间区域依次使用一个微分神经网络和一个代数神经网络,从而实现DAE的高精度连续时间预测。数值算例结果表明,基于勒让德多项式和4阶的Lobatto方法的LL-PINN实现了对DAE的高精度求解。与函数连接理论(TFC)试验解模型和PINN模型相比,LL-PINN的微分变量和代数变量的预测解与精确解的绝对误差显著降低,精度提高了一个或两个量级。因此,所提求解模型对求解DAE问题具有较好的计算精度,可为解决具有挑战性的偏DAE提供可行的解决方案。 展开更多
关键词 微分代数方程 物理信息神经网络 LobattoⅢA方法 勒让德多项式 时间区域分解
在线阅读 下载PDF
基于ST-CNN的脉冲型地震动与脉冲周期融合识别方法
14
作者 禹海涛 朱晨阳 +3 位作者 傅大宝 许乃星 卢哲超 蔡辉腾 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第12期2675-2683,共9页
如何快速准确地识别脉冲型地震动是困扰学术界和工程界的关键难题,定量识别方法虽然能够克服人工识别的经验性限制,但是传统定量识别方法存在识别结果不一致、适用范围不广泛、难以同时识别脉冲周期或识别的脉冲周期部分情况下差异明显... 如何快速准确地识别脉冲型地震动是困扰学术界和工程界的关键难题,定量识别方法虽然能够克服人工识别的经验性限制,但是传统定量识别方法存在识别结果不一致、适用范围不广泛、难以同时识别脉冲周期或识别的脉冲周期部分情况下差异明显等问题。为此建立了一种问题针对性融合学习规则并结合卷积神经网络(CNN),开发出了一种新的脉冲型地震动与脉冲周期同步识别方法。该学习规则通过对基于不同识别原理的多个传统典型识别方法进行融合学习并采用全球范围的30000条任意方向地震动数据进行训练和验证,摒弃了以往繁琐的人工标记过程并得到了3个问题针对性识别模型,分别命名为Strict识别模型、General识别模型以及TP识别模型。除此之外,为解决地震动时序输入信息不足从而导致模型泛化能力较弱的问题,对CNN的输入结构进行了优化增强,提出了ST-CNN模型。其引入了S变换层以将地震动时序变换至时频,从而增加了频域分布信息并进一步提高了识别精度。结果表明:Strict识别模型能严格区分脉冲型与非脉冲型地震动,识别结果得到已有方法的一致认可;General识别模型的识别能力更强,适用范围更加广泛;TP识别模型识别的脉冲周期更加准确,并可与前述识别模型并用以同步输出识别结果。提出的问题针对性融合学习规则还可推广至其他工程领域与其他机器学习模型,建立的识别方法可为脉冲型地震动研究提供科学指导。 展开更多
关键词 脉冲型地震动 脉冲周期 识别方法 卷积神经网络 S变换
在线阅读 下载PDF
Backstepping sliding mode control for uncertain strict-feedback nonlinear systems using neural-network-based adaptive gain scheduling 被引量:13
15
作者 YANG Yueneng YAN Ye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期580-586,共7页
A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain st... A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC. 展开更多
关键词 backstepping control sliding mode control(SMC) neural network(nn) strict-feedback system chattering decrease
在线阅读 下载PDF
Adaptive neural network tracking control for a class of unknown nonlinear time-delay systems 被引量:5
16
作者 Chen Weisheng Li Junmin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期611-618,共8页
For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a r... For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a robust memoryless adaptive NN tracking controller. Unknown time-delay functions are approximated by NNs, such that the requirement on the nonlinear time-delay functions is relaxed. Based on Lyapunov-Krasoviskii functional, the sem-global uniformly ultimately boundedness (UUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters. The feasibility is investigated by an illustrative simulation example. 展开更多
关键词 nonlinear time-delay system neural network adaptive bounding technique memoryless adaptive nn controller.
在线阅读 下载PDF
Passivity analysis for uncertain stochastic neural networks with discrete interval and distributed time-varying delays 被引量:3
17
作者 P.Balasubramaniam G.Nagamani 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期688-697,共10页
The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the ... The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belongs to a given interval,which means that the lower and upper bounds of interval time-varying delays are available.By constructing proper Lyapunov-Krasovskii functional and employing a combination of the free-weighting matrix method and stochastic analysis technique,new delay-dependent passivity conditions are derived in terms of linear matrix inequalities(LMIs).Finally,numerical examples are given to show the less conservatism of the proposed conditions. 展开更多
关键词 linear matrix inequality(LMI) stochastic neural network PASSIVITY interval time-varying delay Lyapunov method.
在线阅读 下载PDF
Neural Network inverse Adaptive Controller Based on Davidon Least Square 被引量:2
18
作者 Chen, Zengqiang Lu, Zhao Yuan, Zhuzhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期47-52,共6页
General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neu... General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme. 展开更多
关键词 ALGORITHMS Backpropagation Convergence of numerical methods Feedforward neural networks Inverse problems Least squares approximations Mathematical models Multilayer neural networks
在线阅读 下载PDF
Novel Newton’s learning algorithm of neural networks 被引量:2
19
作者 Long Ning Zhang Fengli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期450-454,共5页
Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the ... Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the gradient method is linearly convergent while Newton's method has second order convergence rate. The fast computing algorithm of Hesse matrix of the cost function of NN is proposed and it is the theory basis of the improvement of Newton's learning algorithm. Simulation results show that the convergence rate of Newton's learning algorithm is high and apparently faster than the traditional BP method's, and the robustness of Newton's learning algorithm is also better than BP method' s. 展开更多
关键词 Newton's method Hesse matrix fast learning BP method neural network.
在线阅读 下载PDF
基于ANN模型的内冷型溶液除湿器性能研究 被引量:1
20
作者 罗伊默 常亚银 李念平 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第9期198-205,共8页
溶液除湿器因可被低品位热能驱动,且具有除湿效率高等优点而受到广泛关注,但其传质性能的预测准确度还有待提高.本文搭建了单通道内冷型溶液除湿实验平台,研究了不同参数对于除湿过程中传质性能的影响,同时,建立了基于MATLAB平台的人工... 溶液除湿器因可被低品位热能驱动,且具有除湿效率高等优点而受到广泛关注,但其传质性能的预测准确度还有待提高.本文搭建了单通道内冷型溶液除湿实验平台,研究了不同参数对于除湿过程中传质性能的影响,同时,建立了基于MATLAB平台的人工神经网络(ANN)模型用于预测传质性能,并用上述实验数据对该ANN模型进行了验证.结果表明,ANN模型预测得出的Sh与实验Sh平均绝对相对偏差(MARD)为4.07%.与现有经验公式相比,建立的ANN模型预测精度更高.此外,还利用ANN模型研究了不同参数变化下的Sh的变化趋势,从而分析不同参数对除湿性能的影响. 展开更多
关键词 机器学习 神经网络 溶液除湿器 参数化研究
在线阅读 下载PDF
上一页 1 2 116 下一页 到第
使用帮助 返回顶部