In recent years, advanced control technologies have been used for the optimum control of a cold storage. But there are still a lot of shortcomings. One of the main problems is that the traditional methods can't re...In recent years, advanced control technologies have been used for the optimum control of a cold storage. But there are still a lot of shortcomings. One of the main problems is that the traditional methods can't realize the on-line predictive optimum control of a refrigerating system with simple and valid algorithms. An RBF neural network has a strong ability in nonlinear mapping, a good interpolating value performance, and a higher training speed. Thus a two-stage RBF neural network is proposed in this paper. Combining the measured values with the predicted values, the two-stage RBF neural network is used for the on-line predictive optimum control of the cold storage temperature. The application results of the new methods show a great success.展开更多
As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information...As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information to the expanded images, and cannot improve resolution in deed. Multiframe-based techniques are effective ways for high-resolution image reconstruction, but their computation complexities and the difficulties in achieving image sequences limit their applications. An original method using an artificial neural network is proposed in this paper. Using the inherent merits in neural network, we can establish the mapping between high frequency components in low-resolution images and high-resolution images. Example applications and their results demonstrated the images reconstructed by our method are aesthetically and quantitatively (using the criteria of MSE and MAE) superior to the images acquired by common methods. Even for infrared images this method can give satisfactory results with high definition. In addition, a single-layer linear neural network is used in this paper, the computational complexity is very low, and this method can be realized in real time.展开更多
文摘In recent years, advanced control technologies have been used for the optimum control of a cold storage. But there are still a lot of shortcomings. One of the main problems is that the traditional methods can't realize the on-line predictive optimum control of a refrigerating system with simple and valid algorithms. An RBF neural network has a strong ability in nonlinear mapping, a good interpolating value performance, and a higher training speed. Thus a two-stage RBF neural network is proposed in this paper. Combining the measured values with the predicted values, the two-stage RBF neural network is used for the on-line predictive optimum control of the cold storage temperature. The application results of the new methods show a great success.
文摘As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information to the expanded images, and cannot improve resolution in deed. Multiframe-based techniques are effective ways for high-resolution image reconstruction, but their computation complexities and the difficulties in achieving image sequences limit their applications. An original method using an artificial neural network is proposed in this paper. Using the inherent merits in neural network, we can establish the mapping between high frequency components in low-resolution images and high-resolution images. Example applications and their results demonstrated the images reconstructed by our method are aesthetically and quantitatively (using the criteria of MSE and MAE) superior to the images acquired by common methods. Even for infrared images this method can give satisfactory results with high definition. In addition, a single-layer linear neural network is used in this paper, the computational complexity is very low, and this method can be realized in real time.