期刊文献+
共找到414篇文章
< 1 2 21 >
每页显示 20 50 100
基于WOA-SA-RBF模型的西北内陆河流域突发水污染安全评价
1
作者 靳春玲 田亮 +2 位作者 贡力 李战江 蔡惠春 《科学技术与工程》 北大核心 2025年第23期10075-10083,共9页
为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与... 为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与模拟退火策略的径向基(whale optimization algorithm-simulated annealing-radial basis function,WOA-SA-RBF)神经网络模型,来评估该区域的突发水污染风险等级,并与粒子群优化算法-径向基(particle swarm optimization-radial basis function,PSO-RBF),遗传优化算法-径向基(genetic algorithm-radial basis function,GA-RBF)神经网络模型及传统评价方法优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)法的评价结果进行对比分析。分析结果显示:疏勒河敦煌段在2017—2018年突发水污染风险水平被评定为Ⅱ级,而2019—2022年则降为Ⅲ级,显示出风险逐渐下降并趋向稳定的趋势;结果与TOPSIS法分析结果一致,与流域治理情况相符,从而有效验证本文评估模型的精度。研究成果有助于提高疏勒河流域针对突发水污染事件的预防控制能力与紧急应对效率,对西北内陆河流域的水资源管理以及祁连山区域的生态保护工作具有不可忽视的重要意义。 展开更多
关键词 鲸鱼优化算法(WOA) 模拟退火算法(SA) 径向基神经网络模型(rbf) 突发水污染 安全评价 内陆河
在线阅读 下载PDF
基于SSA-RBFNN的钢管混凝土界面粘结强度研究
2
作者 刘文博 杨喜娟 +1 位作者 王力 李子奇 《中国安全生产科学技术》 北大核心 2025年第3期148-155,共8页
为了改善传统径向基神经网络(RBFNN)存在对样本数据依赖性强、参数选择复杂、收敛速度慢等缺陷。将麻雀搜索算法(SSA)应用于RBFNN预测模型,提出基于SSA-RBFNN的CFST界面粘结强度预测模型,收集319组数据建立数据库,选取8种影响因素作为... 为了改善传统径向基神经网络(RBFNN)存在对样本数据依赖性强、参数选择复杂、收敛速度慢等缺陷。将麻雀搜索算法(SSA)应用于RBFNN预测模型,提出基于SSA-RBFNN的CFST界面粘结强度预测模型,收集319组数据建立数据库,选取8种影响因素作为输入层参数和界面粘结强度作为输出层参数,分别建立RBFNN和SSA-RBFNN模型。通过平均绝对百分比误差(MAPE)和决定系数(R 2)等指标,将2种机器学习模型与6种现有公式进行比较,评估它们在预测精度和稳定性方面的表现。研究结果表明:2种机器学习模型比公式精度更高。其中,SSA-RBFNN模型有更好的预测性能,更有助于高效预测CFST的界面粘结强度。研究结果可为CFST结构工程设计提供相应的预测方法和技术支持,可以帮助工程师在设计和施工过程中更好地评估结构的承载能力和安全性。 展开更多
关键词 rbf神经网络 麻雀搜索算法 钢管混凝土 界面粘结强度 机器学习模型
在线阅读 下载PDF
基于RBF神经网络的飞机油量计算方法
3
作者 罗云鹤 赵铮 《空军工程大学学报》 北大核心 2025年第2期26-33,共8页
针对目前飞机燃油测量采用的查表插值油量计算方法效率低,以及神经网络应用于飞机油箱油量计算存在的精度不高、容错性不好等问题,开展了基于径向基函数(RBF)神经网络的飞机油量计算方法研究。通过改善油箱体积特性数据库的离散分布优... 针对目前飞机燃油测量采用的查表插值油量计算方法效率低,以及神经网络应用于飞机油箱油量计算存在的精度不高、容错性不好等问题,开展了基于径向基函数(RBF)神经网络的飞机油量计算方法研究。通过改善油箱体积特性数据库的离散分布优化训练样本质量,改进神经网络训练算法提高对输入数据误差容错性,采用遗传算法优化神经网络设计参数,有效提升了RBF神经网络在油量计算中的泛化能力和训练效率。经某型飞机燃油箱计算实例和地面试验验证表明,油箱模型数据离散方法能更为准确描述油箱体积特性,与等距切割方法相比测试样本插值计算均方根误差下降34.8%。构建的RBF神经网络具有较好的计算精度,计算效率较插值计算方法提升了约5倍。改进算法与正交最小二乘法(OLS)算法相比,当输入参数存在误差时测试样本预估均方根误差下降61.5%,容错性明显提升,具有工程实用价值。 展开更多
关键词 飞机燃油测量 油量计算方法 rbf神经网络 油箱体积特性
在线阅读 下载PDF
改进RBF神经网络在智能机器人轨迹规划中的研究 被引量:2
4
作者 刘翔 王开科 李菲 《机械设计与制造》 北大核心 2024年第4期90-94,共5页
针对工业生产中对智能机器人轨迹规划的要求越来越高,在工业机器人运动模型的基础上,提出了一种将RBF神经网络和遗传算法相结合的工业机器人轨迹规划方法。通过遗传算法对RBF神经网络的网络结构、连接权值和阈值进行优化,精确跟踪机器... 针对工业生产中对智能机器人轨迹规划的要求越来越高,在工业机器人运动模型的基础上,提出了一种将RBF神经网络和遗传算法相结合的工业机器人轨迹规划方法。通过遗传算法对RBF神经网络的网络结构、连接权值和阈值进行优化,精确跟踪机器人的轨迹。通过仿真将与未改进前的轨迹规划算法进行比较,验证该方法的优越性。结果表明,与改进前的规划算法相比,文中规划方法误差小,适应性强,能够满足工业机器人轨迹规划的预期要求。为工业机器人轨迹规划方法的发展提供了一定的参考。 展开更多
关键词 工业机器人 轨迹规划 rbf神经网络 遗传算法 关节轨迹
在线阅读 下载PDF
基于IPSO-RBF神经网络的西北内陆河流域突发水污染风险评估 被引量:1
5
作者 靳春玲 蔡惠春 +2 位作者 贡力 田亮 李战江 《环境科学与技术》 CAS CSCD 北大核心 2024年第9期120-127,共8页
突发水污染事故会破坏环境、危害健康,开展西北内陆河流域突发水污染风险评估对于维护西部脆弱生态安全尤为重要。该文针对西北内陆河流域突发水污染问题,利用PSR模型遴选18个因素建立突发水污染风险评价指标体系,基于径向基神经网络模... 突发水污染事故会破坏环境、危害健康,开展西北内陆河流域突发水污染风险评估对于维护西部脆弱生态安全尤为重要。该文针对西北内陆河流域突发水污染问题,利用PSR模型遴选18个因素建立突发水污染风险评价指标体系,基于径向基神经网络模型(RBF)构建突发水污染风险评价模型。为进一步保证模型精度,采用改进惯性权重因子和学习因子的粒子群算法(IPSO)对神经网络模型参数进行优化,建立IPSO-RBF神经网络西北内陆河突发水污染风险评价模型,并运用该模型对石羊河流域武威段2017-2022年突发水污染进行风险等级评价。结果显示,石羊河流域武威段突发水污染2017-2019年风险等级为Ⅱ级,2020-2022年风险等级为Ⅲ级,结果与熵权-TOPSIS法一致,与流域治理情况相符。该研究成果有利于提升石羊河流域突发水污染的防控水平与应急处置能力,对于西北内陆河流域水资源管理以及祁连山生态保护具有重要意义。 展开更多
关键词 突发水污染 风险评估 rbf神经网络 IPSO算法 内陆河流域
在线阅读 下载PDF
基于MI-PSO-RBF神经网络的铁路客货运量预测研究 被引量:2
6
作者 薛锋 吴林鸿 +1 位作者 汪雯文 周琳 《铁道运输与经济》 北大核心 2024年第9期123-135,共13页
准确地预测铁路客货运量对合理配置运输资源、提高铁路客货运组织工作效率有重要作用。为提高铁路客货运量的预测精度,提出一种基于MI-PSO-RBF神经网络的客货运量组合预测模型。本研究对铁路客货运量的影响因素及其内在关联进行分析,选... 准确地预测铁路客货运量对合理配置运输资源、提高铁路客货运组织工作效率有重要作用。为提高铁路客货运量的预测精度,提出一种基于MI-PSO-RBF神经网络的客货运量组合预测模型。本研究对铁路客货运量的影响因素及其内在关联进行分析,选取相关指标,利用互信息素法对指标进行筛选,构建影响因素指标体系。基于该指标体系,运用粒子群算法优化的RBF神经网络模型分别对铁路客货运量进行预测,并与传统的BP神经网络、RBF神经网络预测模型进行比较。结果显示,经过参数调整优化后的MI-PSO-RBF神经网络在铁路客运量及货运量的预测精度方面表现最佳,测试集R2分别达到了0.9481与0.9911,具有较高的精度及泛化能力,表明该组合预测模型能够进一步提升神经网络模型预测铁路客货运量精确度。 展开更多
关键词 客货运量预测 互信息素 粒子群算法 rbf神经网络 影响因素法
在线阅读 下载PDF
基于多目标灰狼优化算法与RBF神经网络的真空灭弧室触头结构优化设计 被引量:7
7
作者 丁璨 王周琳 +1 位作者 袁召 李江 《高电压技术》 EI CAS CSCD 北大核心 2024年第2期543-550,共8页
在真空灭弧室触头开断过程中,合适的磁场分布有利于提高其开断性能;在合闸过程中,动、静触头间存在的电动斥力会导致触头出现弹跳现象。针对以上问题,首先建立了带铁芯式杯状纵磁触头的三维模型,进行了磁场分布与电动力的计算;为了进一... 在真空灭弧室触头开断过程中,合适的磁场分布有利于提高其开断性能;在合闸过程中,动、静触头间存在的电动斥力会导致触头出现弹跳现象。针对以上问题,首先建立了带铁芯式杯状纵磁触头的三维模型,进行了磁场分布与电动力的计算;为了进一步提高触头的性能,然后构建了以触头片开槽长度、开槽宽度、径向偏转角度、杯座斜槽高度及单个斜槽上下旋转角度为输入,电流峰值时刻触头间隙中心平面纵向磁场强度最大值、过零时刻中心点处磁滞时间、合闸时动静触头间的电动斥力分别为输出的RBF神经网络模型;最后结合RBF神经网络模型与多目标灰狼优化算法(MOGWO)对触头结构进行了优化。结果表明:与初始结构参数相比,当触头片开槽长度为19.74mm、宽度为3.94mm、径向偏转角为19.9°、杯座斜槽高度为18.0mm、斜槽上下旋转角为119.2°时,触头具有更好的磁场分布特性,且动、静触头间的电动斥力明显减小,有利于提高触头的工作性能。 展开更多
关键词 真空灭弧室触头 电动斥力 rbf神经网络 磁场特性 多目标灰狼优化算法
在线阅读 下载PDF
基于ASSA-RBF联合算法的三元锂离子电池SOC估计 被引量:3
8
作者 刘齐 吴松荣 +3 位作者 邓鸿枥 张翰文 付聪 柳博 《电子测量技术》 北大核心 2024年第1期71-78,共8页
准确估计三元锂电池的荷电状态(SOC)是保障电动汽车安全稳定运行的基础。针对传统BP神经网络估计精度不高,而RBF神经网络也容易陷入局部最优的问题,提出一种基于自适应麻雀搜索算法与RBF神经网络联合的三元锂电池SOC估计方法。首先,对... 准确估计三元锂电池的荷电状态(SOC)是保障电动汽车安全稳定运行的基础。针对传统BP神经网络估计精度不高,而RBF神经网络也容易陷入局部最优的问题,提出一种基于自适应麻雀搜索算法与RBF神经网络联合的三元锂电池SOC估计方法。首先,对标准麻雀搜索算法进行改进,采用精英混沌反向机制初始化麻雀种群,采用柯西-高斯变异策略优化麻雀种群中跟随者位置更新公式;然后,使用改进后的麻雀搜索算法对RBF神经网络的初始权值和宽度参数进行寻优,以提升算法对SOC的估计精度;最后,基于三元锂电池的充放电实验数据进行模型验证。结果表明,动态应力测试工况下,所提联合算法模型SOC估计均方根误差为0.694%,平均百分比误差为3.15%,能很好的应用于三元锂电池SOC估计。 展开更多
关键词 三元锂电池 SOC估计 rbf神经网络 自适应麻雀搜索算法
在线阅读 下载PDF
基于SLM-RBF的配电网分布式光伏集群智能划分策略 被引量:1
9
作者 卜强生 吕朋蓬 +4 位作者 李炜祺 罗飞 俞婧雯 窦晓波 胡秦然 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第10期1534-1543,共10页
分布式电源大规模分散接入给配电网的优化调度带来计算上的维数灾难,需要对分布式电源进行集群以降低调控难度,因此合理的集群划分十分重要.同时,配电网实时量测数据不全造成分布式电源进行实时集群划分难度大、时间效率低,因此提出一... 分布式电源大规模分散接入给配电网的优化调度带来计算上的维数灾难,需要对分布式电源进行集群以降低调控难度,因此合理的集群划分十分重要.同时,配电网实时量测数据不全造成分布式电源进行实时集群划分难度大、时间效率低,因此提出一种智能局部移动(SLM)算法与径向基神经网络相结合的分布式电源集群智能划分策略.首先,选取有功和无功功率调节范围以及有功和无功功率-电压的灵敏度作为集群划分的指标,构造相似度矩阵并基于SLM形成分布式电源的集群划分方案库.然后,离线建立电压拟合模型,拟合可实时观测节点的功率与电压之间的关系;同时,离线建立电压-划分结果模型,在线通过电压得到实时划分结果,创新性地解决了潮流模型缺失时无法进行集群划分的问题,提高了集群划分的实时性.最后,在MATLAB平台通过仿真计算验证了算法的合理性和优越性. 展开更多
关键词 智能局部移动算法 径向基神经网络 集群划分 电压拟合
在线阅读 下载PDF
应用PSO-RBF神经网络预测太阳能PV/T系统的热、电性能 被引量:5
10
作者 何迪 王聪聪 +4 位作者 陈红兵 孙俊辉 高雪宁 王传岭 马卓越 《可再生能源》 CAS CSCD 北大核心 2024年第4期455-463,共9页
为准确预测太阳能光伏光热(Solar Photovoltaic/Thermal,PV/T)系统的热、电性能,文章利用PSO(Particle Swarm Optimization)算法优化了RBF(Radial Basis Function)神经网络,并基于此方法建立了太阳能PV/T系统性能的仿真预测模型,与基于... 为准确预测太阳能光伏光热(Solar Photovoltaic/Thermal,PV/T)系统的热、电性能,文章利用PSO(Particle Swarm Optimization)算法优化了RBF(Radial Basis Function)神经网络,并基于此方法建立了太阳能PV/T系统性能的仿真预测模型,与基于未优化RBF神经网络建立的预测模型进行了对比分析。同时,搭建了太阳能PV/T实验平台,通过云平台采集实验数据用于上述模型。研究结果表明:使用PSO算法优化后的RBF神经网络模型相较于未优化模型预测精度提高了20%,预测稳定性提高了30%,拟合优度R值有所提升。基于PSO-RBF神经网络建立的预测模型可精确预测太阳能PV/T系统的热、电性能。 展开更多
关键词 PV/T rbf神经网络 PSO算法 模拟预测
在线阅读 下载PDF
Parameter Estimation of RBF-AR Model Based on the EM-EKF Algorithm 被引量:6
11
作者 Yanhui Xi Hui Peng Hong Mo 《自动化学报》 EI CSCD 北大核心 2017年第9期1636-1643,共8页
在线阅读 下载PDF
基于特征优化和BSO-RBF神经网络的NO_(x)浓度预测模型 被引量:1
12
作者 张国兴 王世朋 《计量学报》 CSCD 北大核心 2024年第2期285-293,共9页
针对火力发电厂中燃烧系统运行工况复杂、迟延较大,导致选择性催化还原(SCR)烟气脱硝系统中入口NOx质量浓度难以准确测量的问题,提出了一种基于特征优化和径向基函数(radial basis function,RBF)神经网络的预测模型。将经过特征优化后... 针对火力发电厂中燃烧系统运行工况复杂、迟延较大,导致选择性催化还原(SCR)烟气脱硝系统中入口NOx质量浓度难以准确测量的问题,提出了一种基于特征优化和径向基函数(radial basis function,RBF)神经网络的预测模型。将经过特征优化后的变量作为模型的最终输入变量,并使用天牛群优化(beetle swarm optimization,BSO)算法对神经网络超参数进行寻优,建立入口NO_(x)浓度预测模型。结果表明,经过特征优化后的变量放入模型后,其预测结果要优于原始变量:经特征优化及时延处理后的模型其S_(RMSE)减少了44.5%,R^(2)增加了2.3%,经过BSO确定后的神经网络超参数使得模型精度也得到了进一步提升。 展开更多
关键词 NO_(x)浓度预测 特征优化 天牛群优化算法 径向基函数 神经网络
在线阅读 下载PDF
RBF神经网络在船舶模拟电路故障诊断中的应用 被引量:1
13
作者 霍艳飞 《舰船科学技术》 北大核心 2024年第10期182-185,共4页
针对船舶模拟电路元件复杂交互,故障信号在大量的正常信号中难以凸显,故障特征提取识别难度较大的问题,提出基于RBF神经网络的船舶模拟电路故障诊断方法。由基于小波包的船舶模拟电路故障特征提取方法,以小波分解重构的方式,捕捉电路频... 针对船舶模拟电路元件复杂交互,故障信号在大量的正常信号中难以凸显,故障特征提取识别难度较大的问题,提出基于RBF神经网络的船舶模拟电路故障诊断方法。由基于小波包的船舶模拟电路故障特征提取方法,以小波分解重构的方式,捕捉电路频带能量变化特征;使用基于状态转移算法优化RBF神经网络的故障诊断模型,由状态转移算法优化RBF神经网络参数,构建用于诊断电路故障的RBF神经网络模型后,学习所提取故障特征与类型之间关系,诊断新输入的船舶模拟电路输出信号故障类型。实验测试结果显示,此方法在有效捕捉船舶模拟电路故障频带能量变化特征后,对多种船舶模拟电路故障的诊断结果均未出现明显错误。 展开更多
关键词 rbf神经网络 船舶模拟电路 故障诊断 状态转移算法
在线阅读 下载PDF
基于RBF-PSO算法的潜艇尾部结构噪声优化
14
作者 李舒成 张冠军 柯昱照 《噪声与振动控制》 CSCD 北大核心 2024年第1期199-204,共6页
针对潜艇尾部结构噪声突出问题,选取潜艇尾部桨轴艇耦合模型为研究对象,以潜艇尾部质量为约束条件,以纵向、横向激励力下的水下潜艇尾部辐射声功率级为优化目标,设计以尾壳板厚度、T型材结构参数(面板宽、腹板高、面板厚度、腹板厚度)... 针对潜艇尾部结构噪声突出问题,选取潜艇尾部桨轴艇耦合模型为研究对象,以潜艇尾部质量为约束条件,以纵向、横向激励力下的水下潜艇尾部辐射声功率级为优化目标,设计以尾壳板厚度、T型材结构参数(面板宽、腹板高、面板厚度、腹板厚度)为设计变量的均匀试验设计,采用径向基函数(Radia Basis Function,RBF)神经网络构建反映设计变量与优化目标之间映射关系的代理模型,使用粒子群算法(Particle Swarm Optimization,PSO)对潜艇尾部噪声进行多目标优化。研究表明:纵向激励下潜艇尾部水下辐射声功率合成级降低3.79 dB,横向激励下潜艇尾部水下辐射声功率合成级降低1.55 d B,潜艇尾部质量降低3.424 t。将RBF-PSO算法应用于潜艇尾部结构低频噪声优化问题效果较好,可以为潜艇的结构噪声优化提供指导。 展开更多
关键词 声学 rbf神经网络 粒子群算法 潜艇尾部 噪声优化
在线阅读 下载PDF
基于GN-BFGS算法的RBF神经网络短期负荷预测 被引量:14
15
作者 赵登福 张涛 +2 位作者 杨增辉 谷庆利 夏道止 《电力系统自动化》 EI CSCD 北大核心 2003年第4期33-36,共4页
提出了应用混合 GN( Gauss- Newton) - BFGS( Broyden- Fletcher- Goldfarb- Shanno)法进行RBF(径向基函数 )神经网络学习的算法。这种方法结合 GN法与 BFGS法的特点 ,既尽可能地利用了问题本身的特殊结构 ,又能取得超线性甚至二次渐近... 提出了应用混合 GN( Gauss- Newton) - BFGS( Broyden- Fletcher- Goldfarb- Shanno)法进行RBF(径向基函数 )神经网络学习的算法。这种方法结合 GN法与 BFGS法的特点 ,既尽可能地利用了问题本身的特殊结构 ,又能取得超线性甚至二次渐近收敛率 ,因此有效地提高了学习效率。在学习过程中 ,利用该方法能够区分零残量和非零残量 ,并利用这种特点进行隐层神经元数目的自动调整 ,从而可以保证神经网络的学习能力和推广能力。多个实际电网的负荷预测结果表明 ,该方法同神经网络的其他算法相比 ,具有训练时间短。 展开更多
关键词 GN-BFGS算法 rbf神经网络 短期负荷预测 电网 电力系统 学习效率
在线阅读 下载PDF
机器人采摘苹果果实的K-means和GA-RBF-LMS神经网络识别 被引量:43
16
作者 贾伟宽 赵德安 +3 位作者 刘晓洋 唐书萍 阮承治 姬伟 《农业工程学报》 EI CAS CSCD 北大核心 2015年第18期175-183,共9页
为进一步提升苹果果实的识别精度和速度,从而提高苹果采摘机器人的采摘效率。提出一种基于K-means聚类分割和基于遗传算法(genetic algorithm,GA)、最小均方差算法(least mean square,LMS)优化的径向基(radial basis function,RBF)神经... 为进一步提升苹果果实的识别精度和速度,从而提高苹果采摘机器人的采摘效率。提出一种基于K-means聚类分割和基于遗传算法(genetic algorithm,GA)、最小均方差算法(least mean square,LMS)优化的径向基(radial basis function,RBF)神经网络相结合的苹果识别方法。首先将采集到的苹果图像在Lab颜色空间下利用K-means聚类算法对其进行分割,分别提取分割图像的RGB、HSI颜色特征分量和圆方差、致密度、周长平方面积比、Hu不变矩形状特征分量。将提取的16个特征作为神经网络的输入,对RBF神经网络进行训练,以得到苹果果实的识别模型。针对RBF神经网络学习率低、过拟合等不足,引入遗传算法对RBF隐层神经元个数和连接权值进行优化,采取二者混合编码同时进化的优化方式,最后再利用LMS对连接权值进一步学习,建立新的神经网络优化模型(GA-RBF-LMS),以提高神经网络的运行效率和识别精度。为了获得更精确的网络模型,在训练过程中,苹果果实连同树枝、树叶一块训练;得到的模型在识别过程中,可一定程度上避免枝叶遮挡对果实识别的影响。为了更好地验证新方法,分别与传统的BP(back propagation)和RBF神经网络、GA-RBF优化模型比较,结果表明,该文算法对于遮挡、重叠果实的识别率达95.38%、96.17%,总体识别率达96.95%;从训练时间看,该文算法虽耗时较长,用150个样本进行训练平均耗时4.412 s,但训练成功率可达100%,且节省了人工尝试构造网络结构造成的时间浪费;从识别时间看,该文算法识别179个苹果的时间为1.75 s。可见GA-RBF-LMS网络模型在运行效率和识别精度较优。研究结果为苹果采摘机器人快速、精准识别果实提供参考。 展开更多
关键词 图像处理 算法 识别 苹果采摘机器人 K-means分割 特征提取 GA-rbf神经网络
在线阅读 下载PDF
RBF神经网络与NSGA-II混合算法用于±1 100kV穿墙套管3维电场模拟及内屏蔽结构优化 被引量:24
17
作者 张施令 彭宗仁 +3 位作者 杜进桥 李乃一 胡伟 邓志祥 《高电压技术》 EI CAS CSCD 北大核心 2014年第6期1847-1857,共11页
±1 100 kV特高压穿墙套管是直流输电系统中的重要设备,但目前对其3维静电场模拟和内屏蔽层结构智能优化鲜有报道。鉴于此,以特高压穿墙套管及其内屏蔽结构为研究对象,建立了3维有限元模型进行电场模拟。提出了应用径向基函数(RBF)... ±1 100 kV特高压穿墙套管是直流输电系统中的重要设备,但目前对其3维静电场模拟和内屏蔽层结构智能优化鲜有报道。鉴于此,以特高压穿墙套管及其内屏蔽结构为研究对象,建立了3维有限元模型进行电场模拟。提出了应用径向基函数(RBF)神经网络与NSGA-II混合算法对套管内屏蔽结构进行多目标优化,并运用经典显示函数验证了该算法的有效性。在此基础上,建立了穿墙套管内屏蔽结构的多目标优化数学模型,结合RBF神经网络与NSGA-II混合算法对内屏蔽结构进行了优化设计,使套管内屏蔽各关键位置处电场强度(简称场强)均满足控制要求。研究表明:与自由网格划分相比,体旋转扫掠网格划分可使有限元模型生成的节点数量降低58.2%;墙体和均压环对套管复合外套有较好的屏蔽作用,且高场强区主要集中在内屏蔽表面,优化后最高场强降低14.5%。3维电场模拟结果可为穿墙套管的设计、制造和运行提供数据和理论依据,且所提算法能较好地解决大场域、多介质复杂模型结构优化耗时较多的问题。 展开更多
关键词 ±1 100 kV 特高压 穿墙套管 有限元法 rbf 神经网络 NSGA-II算法
在线阅读 下载PDF
改进人工蜂群算法优化RBF神经网络的短时交通流预测 被引量:26
18
作者 黄文明 徐双双 +1 位作者 邓珍荣 雷茜茜 《计算机工程与科学》 CSCD 北大核心 2016年第4期713-719,共7页
为了提高径向基函数RBF神经网络预测模型对短时交通流的预测准确性,提出了一种基于改进人工蜂群算法优化RBF神经网络的短时交通流预测模型。利用改进人工蜂群算法确定RBF网络隐含层的中心值以及隐含层单元数,然后训练改进的人工蜂群算法... 为了提高径向基函数RBF神经网络预测模型对短时交通流的预测准确性,提出了一种基于改进人工蜂群算法优化RBF神经网络的短时交通流预测模型。利用改进人工蜂群算法确定RBF网络隐含层的中心值以及隐含层单元数,然后训练改进的人工蜂群算法RBF神经网络预测模型,并将其应用到某城市4天的短时交通流量数据的验证。将实验结果与传统RBF神经网络预测模型、BP神经网络预测模型和小波神经网络预测模型进行了比较。对比结果表明,该方法对短时交通流具有更高的预测准确性。 展开更多
关键词 交通流预测 rbf神经网络 BP神经网络 小波神经网络 人工蜂群算法
在线阅读 下载PDF
一种改进的RBF神经网络学习算法 被引量:54
19
作者 王洪斌 杨香兰 王洪瑞 《系统工程与电子技术》 EI CSCD 北大核心 2002年第6期103-105,共3页
提出了一种改进的RBF神经网络学习算法 ,分别通过减聚类和监督学习算法对网络参数和权值进行训练 ,既可以根据样本合理地聚类、确定RBF径向基函数的个数和相应参数 ,又具有较强的网络映射能力 ,从而不仅使RBF神经网络结构得以优化 ,性... 提出了一种改进的RBF神经网络学习算法 ,分别通过减聚类和监督学习算法对网络参数和权值进行训练 ,既可以根据样本合理地聚类、确定RBF径向基函数的个数和相应参数 ,又具有较强的网络映射能力 ,从而不仅使RBF神经网络结构得以优化 ,性能也得到了提高。 展开更多
关键词 rbf神经网络 减聚类算法 监督学习算法
在线阅读 下载PDF
基于SA-RBF神经网络的冲压成形拉延筋优化 被引量:9
20
作者 谢延敏 唐维 +2 位作者 黄仁勇 熊文诚 卓德志 《西南交通大学学报》 EI CSCD 北大核心 2017年第5期970-976,993,共8页
为提高神经网络预测精度,利用模拟退火算法对基于k-均值聚类的RBF(radical basis function)神经网络进行了结构优化.首先,以NUMISHEET 02翼子板冲压成形为研究对象,以6条等效拉延筋力作为输入变量,基于Spearman相关分析和拉丁超立方抽... 为提高神经网络预测精度,利用模拟退火算法对基于k-均值聚类的RBF(radical basis function)神经网络进行了结构优化.首先,以NUMISHEET 02翼子板冲压成形为研究对象,以6条等效拉延筋力作为输入变量,基于Spearman相关分析和拉丁超立方抽样抽取相关性系数较小的数据作为SA-RBF(simulated annealing-RBF)神经网络的训练样本;其次,将训练样本进行Dynaform数值仿真,以起皱缺陷和拉裂缺陷建立的成形质量评价函数为目标函数,通过SA-RBF神经网络建立等效拉延筋力与目标函数间的非线性映射关系;再次,利用NSGA-II算法对其进行求解得到Pareto最前沿,通过灰色关联分析理论确定最佳拉延筋力;第三,利用优化的拉延筋力对翼子板成形进行数值仿真分析,成形极限图结果表明,优化后的成形件起皱显著减少,而且塑性变形更加均匀,提高了成形质量. 展开更多
关键词 拉延筋 模拟退火算法 rbf神经网络 NSGA-Ⅱ算法
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部