Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided p...Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided process of porous bone modeling was developed which described the design and fabrication of tissue scaffolds by considering intricate architecture,porosity and pore size.To simulate intricate bone structure,different constructive units were presented.In modeling process,bone contour was gotten from computed tomography(CT)images and was divided into two levels.Each level was represented by relatively reconstructive process.Pore size distribution was controlled by using mesh generation.The whole hexahedral mesh was reduced by unit structure,when a 3D mesh with various hexahedral elements was provided.The simulation results show that constructive structure of porous scaffold can meet the needs of clinic implants in accurate and controlled way.展开更多
The 2D sandwich model serves as a potent tool in exploring the influence of surface geometry on the combustion attributes of Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB)propellant under rapid pressu...The 2D sandwich model serves as a potent tool in exploring the influence of surface geometry on the combustion attributes of Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB)propellant under rapid pressure decay.The thickness of the sandwich propellant is derived from slicing the 3D random particle packing,an approach that enables a more effective examination of the micro-flame structure.Comparative analysis of the predicted burning characteristics has been performed with experimental studies.The findings demonstrate a reasonable agreement,thereby validating the precision and soundness of the model.Based on the typical rapid depressurization environment of solid rocket motor(initial combustion pressure is 3 MPa and the maximum depressurization rate is 1000 MPa/s).A-type(a flatter surface),B-type(AP recesses from the combustion surface),and C-type(AP protrudes from the combustion surface)propellant combustion processes are numerically simulated.Upon comparison of the evolution of gas-phase flame between 0.1 and 1 ms,it is discerned that the flame strength and form created by the three sandwich models differ significantly at the beginning stage of depressurization,with the flame structures gradually becoming harmonized over time.Conclusions are drawn by comparison extinction times:the surface geometry plays a pivotal role in the combustion process,with AP protrusion favoring combustion the most.展开更多
工业物联网(Industrial Internet of Things,IIoT)是第六代移动通信系统(6th Generation Mobile Communication System,6G)的典型应用。提出了一种新的基于几何的工业物联网环境非平稳随机模型(Geometry-based Stochastic Model,GBSM)...工业物联网(Industrial Internet of Things,IIoT)是第六代移动通信系统(6th Generation Mobile Communication System,6G)的典型应用。提出了一种新的基于几何的工业物联网环境非平稳随机模型(Geometry-based Stochastic Model,GBSM)。该模型通过速度分解细化IIoT下信道模型中散射体组成的簇的生灭过程,对不同运动方向间信道非平稳特性的区别进行了建模。仿真结果表明,该模型能较好地表征不同运动方向对信道特性的影响,能够有效地反映信道传播环境中簇的数量。与参考模型以及射线追踪仿真的时延均方扩展和角度均方扩展拟合结果验证了该模型具有较高的精度。展开更多
Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was pro...Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters.Furthermore,in order to minimize the springback problem,an accurate springback simulation model of the part was established and validated.The effects of the element size and timesteps on springback model were further investigated.Results indicate that the custom mesh size is beneficial for the springback simulation,and the four timesteps are found suited for the springback analysis for the complex geometry part.Finally,a strategy for reducing the springback by changing the geometry of the blank is proposed.The optimal blank geometry is obtained and used for manufacturing the part.展开更多
To validate the potential space-time adaptive processing (STAP) algorithms for airborne bistatic radar clutter suppression under nonstationary and non-Gaussian clutter environments, a statistically non-Gaussian, spa...To validate the potential space-time adaptive processing (STAP) algorithms for airborne bistatic radar clutter suppression under nonstationary and non-Gaussian clutter environments, a statistically non-Gaussian, space-time clutter model in varying bistatic geometrical scenarios is presented. The inclusive effects of the model contain the range dependency of bistatic clutter spectrum and clutter power variation in range-angle cells. To capture them, a new approach to coordinate system conversion is initiated into formulating bistatic geometrical model, and the bistatic non-Gaussian amplitude clutter representation method based on a compound model is introduced. The veracity of the geometrical model is validated by using the bistatic configuration parameters of multi-channel airborne radar measurement (MCARM) experiment. And simulation results manifest that the proposed model can accurately shape the space-time clutter spectrum tied up with specific airborne bistatic radar scenario and can characterize the heterogeneity of clutter amplitude distribution in practical clutter environments.展开更多
Effects of welding current on temperature and velocity fields during gas metal arc welding(GMAW) of commercially pure aluminum were simulated. Equations of conservation of mass, energy and momentum were solved in a th...Effects of welding current on temperature and velocity fields during gas metal arc welding(GMAW) of commercially pure aluminum were simulated. Equations of conservation of mass, energy and momentum were solved in a three-dimensional transient model using FLOW-3 D software. The mathematical model considered buoyancy and surface tension driving forces. Further, effects of droplet heat content and impact force on weld pool surface deformation were added to the model. The results of simulation showed that an increase in the welding current could increase peak temperature and the maximum velocity in the weld pool. The weld pool dimensions and width of the heat-affected zone(HAZ) were enlarged by increasing the welding current. In addition, dimensionless Peclet, Grashof and surface tension Reynolds numbers were calculated to understand the importance of heat transfer by convection and the roles of various driving forces in the weld pool. In order to validate the model, welding experiments were conducted under several welding currents. The predicted weld pool dimensions were compared with the corresponding experimental results, and good agreement between simulation and preliminary test results was achieved.展开更多
针对树木三维重构过程中面临的处理速度慢、重构精度低等问题,提出一种采用激光点云数据的单木骨架三维重构方法。首先,根据点云数据类型确定组合滤波方式,以去除离群点和地面点;其次,采用一种基于内部形态描述子(ISS)和相干点漂移算法(...针对树木三维重构过程中面临的处理速度慢、重构精度低等问题,提出一种采用激光点云数据的单木骨架三维重构方法。首先,根据点云数据类型确定组合滤波方式,以去除离群点和地面点;其次,采用一种基于内部形态描述子(ISS)和相干点漂移算法(CPD)的混合配准算法(Intrinsic Shape-Coherent Point Drift,IS-CPD),以获取单棵树木的完整点云数据;最后,采用Laplace收缩点集和拓扑细化相结合的方法提取骨架,并通过柱体构建枝干模型,实现骨架三维重构。试验结果表明,相比传统CPD算法,研究设计的配准方案精度和执行速度分别提高50%和95.8%,最终重构误差不超过2.48%。研究结果证明可有效地重构单棵树木的三维骨架,效果接近树木原型,为构建林木数字孪生环境和林业资源管理提供参考。展开更多
基金Project(2011DFB70230)supported by State International Cooperation Program of ChinaProject(N110403003)supported by Basic Research Foundation of Education Ministry of China
文摘Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided process of porous bone modeling was developed which described the design and fabrication of tissue scaffolds by considering intricate architecture,porosity and pore size.To simulate intricate bone structure,different constructive units were presented.In modeling process,bone contour was gotten from computed tomography(CT)images and was divided into two levels.Each level was represented by relatively reconstructive process.Pore size distribution was controlled by using mesh generation.The whole hexahedral mesh was reduced by unit structure,when a 3D mesh with various hexahedral elements was provided.The simulation results show that constructive structure of porous scaffold can meet the needs of clinic implants in accurate and controlled way.
基金supported by the National Natural Science Foundation of China(Grant No.51176076)。
文摘The 2D sandwich model serves as a potent tool in exploring the influence of surface geometry on the combustion attributes of Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB)propellant under rapid pressure decay.The thickness of the sandwich propellant is derived from slicing the 3D random particle packing,an approach that enables a more effective examination of the micro-flame structure.Comparative analysis of the predicted burning characteristics has been performed with experimental studies.The findings demonstrate a reasonable agreement,thereby validating the precision and soundness of the model.Based on the typical rapid depressurization environment of solid rocket motor(initial combustion pressure is 3 MPa and the maximum depressurization rate is 1000 MPa/s).A-type(a flatter surface),B-type(AP recesses from the combustion surface),and C-type(AP protrudes from the combustion surface)propellant combustion processes are numerically simulated.Upon comparison of the evolution of gas-phase flame between 0.1 and 1 ms,it is discerned that the flame strength and form created by the three sandwich models differ significantly at the beginning stage of depressurization,with the flame structures gradually becoming harmonized over time.Conclusions are drawn by comparison extinction times:the surface geometry plays a pivotal role in the combustion process,with AP protrusion favoring combustion the most.
文摘工业物联网(Industrial Internet of Things,IIoT)是第六代移动通信系统(6th Generation Mobile Communication System,6G)的典型应用。提出了一种新的基于几何的工业物联网环境非平稳随机模型(Geometry-based Stochastic Model,GBSM)。该模型通过速度分解细化IIoT下信道模型中散射体组成的簇的生灭过程,对不同运动方向间信道非平稳特性的区别进行了建模。仿真结果表明,该模型能较好地表征不同运动方向对信道特性的影响,能够有效地反映信道传播环境中簇的数量。与参考模型以及射线追踪仿真的时延均方扩展和角度均方扩展拟合结果验证了该模型具有较高的精度。
基金Project(2014ZX04002041)supported by the National Science and Technology Major Project,ChinaProject(51175024)supported by the National Natural Science Foundation of China
文摘Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters.Furthermore,in order to minimize the springback problem,an accurate springback simulation model of the part was established and validated.The effects of the element size and timesteps on springback model were further investigated.Results indicate that the custom mesh size is beneficial for the springback simulation,and the four timesteps are found suited for the springback analysis for the complex geometry part.Finally,a strategy for reducing the springback by changing the geometry of the blank is proposed.The optimal blank geometry is obtained and used for manufacturing the part.
基金supported by the National Defense Advanced Research Foundation of China (51407020304DZ0223).
文摘To validate the potential space-time adaptive processing (STAP) algorithms for airborne bistatic radar clutter suppression under nonstationary and non-Gaussian clutter environments, a statistically non-Gaussian, space-time clutter model in varying bistatic geometrical scenarios is presented. The inclusive effects of the model contain the range dependency of bistatic clutter spectrum and clutter power variation in range-angle cells. To capture them, a new approach to coordinate system conversion is initiated into formulating bistatic geometrical model, and the bistatic non-Gaussian amplitude clutter representation method based on a compound model is introduced. The veracity of the geometrical model is validated by using the bistatic configuration parameters of multi-channel airborne radar measurement (MCARM) experiment. And simulation results manifest that the proposed model can accurately shape the space-time clutter spectrum tied up with specific airborne bistatic radar scenario and can characterize the heterogeneity of clutter amplitude distribution in practical clutter environments.
文摘Effects of welding current on temperature and velocity fields during gas metal arc welding(GMAW) of commercially pure aluminum were simulated. Equations of conservation of mass, energy and momentum were solved in a three-dimensional transient model using FLOW-3 D software. The mathematical model considered buoyancy and surface tension driving forces. Further, effects of droplet heat content and impact force on weld pool surface deformation were added to the model. The results of simulation showed that an increase in the welding current could increase peak temperature and the maximum velocity in the weld pool. The weld pool dimensions and width of the heat-affected zone(HAZ) were enlarged by increasing the welding current. In addition, dimensionless Peclet, Grashof and surface tension Reynolds numbers were calculated to understand the importance of heat transfer by convection and the roles of various driving forces in the weld pool. In order to validate the model, welding experiments were conducted under several welding currents. The predicted weld pool dimensions were compared with the corresponding experimental results, and good agreement between simulation and preliminary test results was achieved.
文摘针对树木三维重构过程中面临的处理速度慢、重构精度低等问题,提出一种采用激光点云数据的单木骨架三维重构方法。首先,根据点云数据类型确定组合滤波方式,以去除离群点和地面点;其次,采用一种基于内部形态描述子(ISS)和相干点漂移算法(CPD)的混合配准算法(Intrinsic Shape-Coherent Point Drift,IS-CPD),以获取单棵树木的完整点云数据;最后,采用Laplace收缩点集和拓扑细化相结合的方法提取骨架,并通过柱体构建枝干模型,实现骨架三维重构。试验结果表明,相比传统CPD算法,研究设计的配准方案精度和执行速度分别提高50%和95.8%,最终重构误差不超过2.48%。研究结果证明可有效地重构单棵树木的三维骨架,效果接近树木原型,为构建林木数字孪生环境和林业资源管理提供参考。