A novel backoff algorithm in CSMA/CA-based medium access control (MAC) protocols for clustered sensor networks was proposed. The algorithm requires that all sensor nodes have the same value of contention window (CW) i...A novel backoff algorithm in CSMA/CA-based medium access control (MAC) protocols for clustered sensor networks was proposed. The algorithm requires that all sensor nodes have the same value of contention window (CW) in a cluster, which is revealed by formulating resource allocation as a network utility maximization problem. Then, by maximizing the total network utility with constrains of minimizing collision probability, the optimal value of CW (Wopt) can be computed according to the number of sensor nodes. The new backoff algorithm uses the common optimal value Wopt and leads to fewer collisions than binary exponential backoff algorithm. The simulation results show that the proposed algorithm outperforms standard 802.11 DCF and S-MAC in average collision times, packet delay, total energy consumption, and system throughput.展开更多
Concurrent multipath transfer(CMT) using stream control transmission protocol(SCTP) multihoming has become an appealing option to increase the throughput and improve the performance of increasingly bandwidth-hungr...Concurrent multipath transfer(CMT) using stream control transmission protocol(SCTP) multihoming has become an appealing option to increase the throughput and improve the performance of increasingly bandwidth-hungry applications.To investigate the rate allocation for applications in CMT,this paper analyzes the capacities of paths shared by competing sources,then proposes the rate allocation model for elastic flows based on the framework of network utility maximization(NUM).In order to obtain the global optimum of the model,a distributed algorithm is presented which depends only on local available information.Simulation results confirm that the proposed algorithm can achieve the global optimum within reasonable convergence times.展开更多
基金Project(60772088) supported by the National Natural Science Foundation of China
文摘A novel backoff algorithm in CSMA/CA-based medium access control (MAC) protocols for clustered sensor networks was proposed. The algorithm requires that all sensor nodes have the same value of contention window (CW) in a cluster, which is revealed by formulating resource allocation as a network utility maximization problem. Then, by maximizing the total network utility with constrains of minimizing collision probability, the optimal value of CW (Wopt) can be computed according to the number of sensor nodes. The new backoff algorithm uses the common optimal value Wopt and leads to fewer collisions than binary exponential backoff algorithm. The simulation results show that the proposed algorithm outperforms standard 802.11 DCF and S-MAC in average collision times, packet delay, total energy consumption, and system throughput.
基金supported by the National Natural Science Foundation of China (60833002)the National Basic Research Program of China (973 Program) (2007CB307100)+2 种基金the National High Technology Research and Development Program of China (863 Program) (2007AA01Z202)the Program for Changjiang Scholars and Innovative Research Team in University (IRT0707)the Program of Introducing Talents of Discipline to Universities (111 Project) (B08002)
文摘Concurrent multipath transfer(CMT) using stream control transmission protocol(SCTP) multihoming has become an appealing option to increase the throughput and improve the performance of increasingly bandwidth-hungry applications.To investigate the rate allocation for applications in CMT,this paper analyzes the capacities of paths shared by competing sources,then proposes the rate allocation model for elastic flows based on the framework of network utility maximization(NUM).In order to obtain the global optimum of the model,a distributed algorithm is presented which depends only on local available information.Simulation results confirm that the proposed algorithm can achieve the global optimum within reasonable convergence times.