In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two...In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two steps in the method:the first step was that the shortest paths along streets between substation and load points were found by the basic ant colony algorithm to form a preliminary radial distribution network,and the second step was that the result of the shortest path was used to initialize pheromone concentration and pheromone updating rules to generate globally optimal distribution network.Cases studies show that the proposed method is effective and can meet the planning requirements.It is verified that the proposed method has better solution and utility than planning method based on the ant colony algorithm.展开更多
Looking at all the indeterminate factors as a whole and regarding activity durations as independent random variables, the traditional stochastic network planning models ignore the inevitable relationship and dependenc...Looking at all the indeterminate factors as a whole and regarding activity durations as independent random variables, the traditional stochastic network planning models ignore the inevitable relationship and dependence among activity durations when more than one activity is possibly affected by the same indeterminate factors. On this basis of analysis of indeterminate effect factors of durations, the effect factors-based stochastic network planning (EFBSNP) model is proposed, which emphasizes on the effects of not only logistic and organizational relationships, but also the dependent relationships, due to indeterminate factors among activity durations on the project period. By virtue of indeterminate factor analysis the model extracts and describes the quantitatively indeterminate effect factors, and then takes into account the indeterminate factors effect schedule by using the Monte Carlo simulation technique. The method is flexible enough to deal with effect factors and is coincident with practice. A software has been developed to simplify the model-based calculation, in VisualStudio.NET language. Finally, a case study is included to demonstrate the applicability of the proposed model and comparison is made with some advantages over the existing models.展开更多
Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, networ...Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA.展开更多
Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization r...Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.展开更多
Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks a...Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks are usually simplified as 2D points in previous literature. However in actual application scenes, not only cameras are always heterogeneous with different height and action radiuses, but also the observed objects are with 3D features(i.e., height). This paper presents a sensor planning formulation addressing the efficiency enhancement of visual tracking in 3D heterogeneous camera networks that track and detect people traversing a region. The problem of sensor planning consists of three issues:(i) how to model the 3D heterogeneous cameras;(ii) how to rank the visibility, which ensures that the object of interest is visible in a camera's field of view;(iii) how to reconfigure the 3D viewing orientations of the cameras. This paper studies the geometric properties of 3D heterogeneous camera networks and addresses an evaluation formulation to rank the visibility of observed objects. Then a sensor planning method is proposed to improve the efficiency of visual tracking. Finally, the numerical results show that the proposed method can improve the tracking performance of the system compared to the conventional strategies.展开更多
According to the characteristic and the requirement of multipath planning, a new multipath planning method is proposed based on network. This method includes two steps: the construction of network and multipath searc...According to the characteristic and the requirement of multipath planning, a new multipath planning method is proposed based on network. This method includes two steps: the construction of network and multipath searching. The construction of network proceeds in three phases: the skeleton extraction of the configuration space, the judgment of the cross points in the skeleton and how to link the cross points to form a network. Multipath searching makes use of the network and iterative penalty method (IPM) to plan multi-paths, and adjusts the planar paths to satisfy the requirement of maneuverability of unmanned aerial vehicle (UAV). In addition, a new height planning method is proposed to deal with the height planning of 3D route. The proposed algorithm can find multiple paths automatically according to distribution of terrain and threat areas with high efficiency. The height planning can make 3D route following the terrain. The simulation experiment illustrates the feasibility of the proposed method.展开更多
基金Project(2009CB219703) supported by the National Basic Research Program of ChinaProject(2011AA05A117) supported by the National High Technology Research and Development Program of China
文摘In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two steps in the method:the first step was that the shortest paths along streets between substation and load points were found by the basic ant colony algorithm to form a preliminary radial distribution network,and the second step was that the result of the shortest path was used to initialize pheromone concentration and pheromone updating rules to generate globally optimal distribution network.Cases studies show that the proposed method is effective and can meet the planning requirements.It is verified that the proposed method has better solution and utility than planning method based on the ant colony algorithm.
文摘Looking at all the indeterminate factors as a whole and regarding activity durations as independent random variables, the traditional stochastic network planning models ignore the inevitable relationship and dependence among activity durations when more than one activity is possibly affected by the same indeterminate factors. On this basis of analysis of indeterminate effect factors of durations, the effect factors-based stochastic network planning (EFBSNP) model is proposed, which emphasizes on the effects of not only logistic and organizational relationships, but also the dependent relationships, due to indeterminate factors among activity durations on the project period. By virtue of indeterminate factor analysis the model extracts and describes the quantitatively indeterminate effect factors, and then takes into account the indeterminate factors effect schedule by using the Monte Carlo simulation technique. The method is flexible enough to deal with effect factors and is coincident with practice. A software has been developed to simplify the model-based calculation, in VisualStudio.NET language. Finally, a case study is included to demonstrate the applicability of the proposed model and comparison is made with some advantages over the existing models.
基金Projects(70373017 70572090) supported by the National Natural Science Foundation of China
文摘Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA.
文摘Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.
基金supported by the National Natural Science Foundationof China(61100207)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2014BAK14B03)+1 种基金the Fundamental Research Funds for the Central Universities(2013PT132013XZ12)
文摘Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks are usually simplified as 2D points in previous literature. However in actual application scenes, not only cameras are always heterogeneous with different height and action radiuses, but also the observed objects are with 3D features(i.e., height). This paper presents a sensor planning formulation addressing the efficiency enhancement of visual tracking in 3D heterogeneous camera networks that track and detect people traversing a region. The problem of sensor planning consists of three issues:(i) how to model the 3D heterogeneous cameras;(ii) how to rank the visibility, which ensures that the object of interest is visible in a camera's field of view;(iii) how to reconfigure the 3D viewing orientations of the cameras. This paper studies the geometric properties of 3D heterogeneous camera networks and addresses an evaluation formulation to rank the visibility of observed objects. Then a sensor planning method is proposed to improve the efficiency of visual tracking. Finally, the numerical results show that the proposed method can improve the tracking performance of the system compared to the conventional strategies.
基金supported by the National High Technology Research and Development Program of China(2007AA12Z166)
文摘According to the characteristic and the requirement of multipath planning, a new multipath planning method is proposed based on network. This method includes two steps: the construction of network and multipath searching. The construction of network proceeds in three phases: the skeleton extraction of the configuration space, the judgment of the cross points in the skeleton and how to link the cross points to form a network. Multipath searching makes use of the network and iterative penalty method (IPM) to plan multi-paths, and adjusts the planar paths to satisfy the requirement of maneuverability of unmanned aerial vehicle (UAV). In addition, a new height planning method is proposed to deal with the height planning of 3D route. The proposed algorithm can find multiple paths automatically according to distribution of terrain and threat areas with high efficiency. The height planning can make 3D route following the terrain. The simulation experiment illustrates the feasibility of the proposed method.