社会网络应用已无处不在,在健康医疗领域也是如此.同时,传感器网络的发展也面临新的形势.在真实世界中,有许多因素(如社会关系、历史健康状态和个人属性信息)都能对健康状态检测?预测结果产生影响.然而,却很少有相关文献能够系统阐述新...社会网络应用已无处不在,在健康医疗领域也是如此.同时,传感器网络的发展也面临新的形势.在真实世界中,有许多因素(如社会关系、历史健康状态和个人属性信息)都能对健康状态检测?预测结果产生影响.然而,却很少有相关文献能够系统阐述新形势下在一个动态社会网络中节点用户健康状态如何进行检测?预测以及不同因素对用户健康状态影响到何种程度.首先描述一种新颖的医疗物联网:医疗社会网络(medical social networks,MSNs);然后统一考虑社会关系、历史健康状态和用户属性对网络用户健康状态检测结果的影响,提出一种新的基于时-空概率因子图模型(temporal-spatial factorgraph model,TS-FGM)的网络用户健康状态检测?预测方法.在Twitter数据集上对所提出的模型进行了验证,并在一个真实的临床医疗数据集上与SVM基线算法进行了对比实验.实验结果表明所提出的TS-FGM模型是有效的,健康状态检测方法也在一定程度上优于基线方法.展开更多
基于胸部正面X光的肺结节检测任务因结节较小、肋骨遮挡等原因检测难度较大,需要在保证高敏感度的前提下,尽可能地减少假阳性样本比率.目前大多数肺结节检测方法一般分为3个步骤:肺部区域分割;候选区域生成;通过进一步分类,减少假阳性结...基于胸部正面X光的肺结节检测任务因结节较小、肋骨遮挡等原因检测难度较大,需要在保证高敏感度的前提下,尽可能地减少假阳性样本比率.目前大多数肺结节检测方法一般分为3个步骤:肺部区域分割;候选区域生成;通过进一步分类,减少假阳性结果.这类方法存在一些问题,每一步的结果都依赖于前一步的性能,整个流程往往会使用多个模型、多次处理以提升效果,算法复杂而且计算量大.同时,会有些结节因为器官遮挡不在肺部分割的区域内,肺部分割会漏掉一些结节.针对这个问题,本文使用一个端到端的目标检测网络来完成肺结节检测任务,X光片经过图像预处理后输入网络,直接得到肺结节的预测结果.此方法基于卷积神经网络(Convolutional Neural Network,CNN)的目标检测模型,同时在分类任务中融合位置和尺寸信息,实验证明这些信息有助于模型判断.在公开数据集--日本放射技术学会(Japanese Society of Radiological Technology,JSRT)数据集的实验结果显示,本文方法在平均每张图像4. 5个假阳性结果时敏感度为92%,2个假阳性结果时敏感度为88%,在较低的假阳性率的情况下,超出了先前的研究成果.展开更多
文摘社会网络应用已无处不在,在健康医疗领域也是如此.同时,传感器网络的发展也面临新的形势.在真实世界中,有许多因素(如社会关系、历史健康状态和个人属性信息)都能对健康状态检测?预测结果产生影响.然而,却很少有相关文献能够系统阐述新形势下在一个动态社会网络中节点用户健康状态如何进行检测?预测以及不同因素对用户健康状态影响到何种程度.首先描述一种新颖的医疗物联网:医疗社会网络(medical social networks,MSNs);然后统一考虑社会关系、历史健康状态和用户属性对网络用户健康状态检测结果的影响,提出一种新的基于时-空概率因子图模型(temporal-spatial factorgraph model,TS-FGM)的网络用户健康状态检测?预测方法.在Twitter数据集上对所提出的模型进行了验证,并在一个真实的临床医疗数据集上与SVM基线算法进行了对比实验.实验结果表明所提出的TS-FGM模型是有效的,健康状态检测方法也在一定程度上优于基线方法.
文摘基于胸部正面X光的肺结节检测任务因结节较小、肋骨遮挡等原因检测难度较大,需要在保证高敏感度的前提下,尽可能地减少假阳性样本比率.目前大多数肺结节检测方法一般分为3个步骤:肺部区域分割;候选区域生成;通过进一步分类,减少假阳性结果.这类方法存在一些问题,每一步的结果都依赖于前一步的性能,整个流程往往会使用多个模型、多次处理以提升效果,算法复杂而且计算量大.同时,会有些结节因为器官遮挡不在肺部分割的区域内,肺部分割会漏掉一些结节.针对这个问题,本文使用一个端到端的目标检测网络来完成肺结节检测任务,X光片经过图像预处理后输入网络,直接得到肺结节的预测结果.此方法基于卷积神经网络(Convolutional Neural Network,CNN)的目标检测模型,同时在分类任务中融合位置和尺寸信息,实验证明这些信息有助于模型判断.在公开数据集--日本放射技术学会(Japanese Society of Radiological Technology,JSRT)数据集的实验结果显示,本文方法在平均每张图像4. 5个假阳性结果时敏感度为92%,2个假阳性结果时敏感度为88%,在较低的假阳性率的情况下,超出了先前的研究成果.