阿尔茨海默病(Alzheimer’s Disease,AD)是一种慢性神经系统退行性疾病,其准确分类有助于实现AD的早期诊断,从而及时采取针对性的治疗和干预措施.本文提出了一种最近邻域聚合图神经网络(Graph neural network with nearest Neighborhood...阿尔茨海默病(Alzheimer’s Disease,AD)是一种慢性神经系统退行性疾病,其准确分类有助于实现AD的早期诊断,从而及时采取针对性的治疗和干预措施.本文提出了一种最近邻域聚合图神经网络(Graph neural network with nearest Neighborhood AgGrEgation,GraphNAGE)的AD分类新方法.首先进行图数据建模,将AD数据样本表示为图数据.采用基于互信息(Mutual Information,MI)的特征选择方法,从样本的114维大脑皮层与皮层下感兴趣区域(Cerebral Cortex and Subcortical Regions Of Interest,CCS-ROI)的体积特征中选取重要性高的体积特征,并将其用于节点建模.提出基于相似性度量的关系建模方法,利用重要性高的体积特征、遗传基因、人口统计信息和认知评分对样本之间的关系进行建模.进而构建GraphNAGE,针对每个节点,基于与该节点相关的边的权重进行最近邻域采样,然后使用均值聚合方法对采样得到的邻居节点和中心节点的数据进行聚合,最后通过一个全连接层和一个Softmax层实现AD分类.在TADPOLE(The Alzheimer’s Disease Prediction Of Longitudinal Evolution)数据集上进行实验,结果表明:本文提出的AD分类方法的准确率(ACCuracy,ACC)为98.20%,F_(1)分数为97.34%,曲线下面积(Area Under Curve,AUC)为97.80%.实验结果表明:本文提出的AD分类方法充分利用了AD数据样本之间的相关性,其性能优于传统的基于机器学习、深度学习和图神经网络(Graph Neural Network,GNN)的AD分类方法.展开更多
文章从邻里尺度出发,检索3个数据库(Web of Science、Pubmed、Scopus)10年来邻里绿地与心理健康的研究性文献,对达到筛选要求的51篇文献的研究方法、研究结果进行统计分析,在梳理城市邻里空间范围、邻里绿地特征、社会背景与心理健康相...文章从邻里尺度出发,检索3个数据库(Web of Science、Pubmed、Scopus)10年来邻里绿地与心理健康的研究性文献,对达到筛选要求的51篇文献的研究方法、研究结果进行统计分析,在梳理城市邻里空间范围、邻里绿地特征、社会背景与心理健康相关性关系的基础上,进一步总结出以居民心理健康为导向的邻里绿地空间规划启示为:对于邻里绿地空间规划,需要综合邻里100~500 m、500~800 m、800~1600 m范围内绿地特征,关注绿道等线性绿地、大型休闲绿地的建设,关注劣势群体聚集区域的绿地规划;对于存量提升的绿地规划,需要优化邻里整体空间的植物结构、丰富植被种类,关注绿地内部品质,尤其重视口袋公园、街道空间的质量提升。未来需要增加纵向研究、绿地量化特征比较研究,以及绿地解释机制关系研究。展开更多
应用特征选择处理多标签数据分类时"维度灾难"问题已成为重要研究方向,因此提出一种基于邻域维护准则的特征选择算法(NPFS,feature selection algorithm based on neighborhood preservation criterion)。通过近似基于特征子...应用特征选择处理多标签数据分类时"维度灾难"问题已成为重要研究方向,因此提出一种基于邻域维护准则的特征选择算法(NPFS,feature selection algorithm based on neighborhood preservation criterion)。通过近似基于特征子空间和基于标签空间的2个相似度矩阵来构建相似性维护表达式,再通过线性近似扩展相似性维护公式得到邻域关系维护公式,并计算出邻域关系维护得分(NRPS,neighborhood relationship preserving score)来评估特征子集的重要性,结合贪婪方法设计具有NRPS的多标签特征选择算法(NPFS)。仿真结果表明,对比MMIFS算法和MDMR算法,所提出的算法在平均准确率、覆盖率、汉明损失、1-错误率、排名损失5个性能指标上均有改善。展开更多
文摘阿尔茨海默病(Alzheimer’s Disease,AD)是一种慢性神经系统退行性疾病,其准确分类有助于实现AD的早期诊断,从而及时采取针对性的治疗和干预措施.本文提出了一种最近邻域聚合图神经网络(Graph neural network with nearest Neighborhood AgGrEgation,GraphNAGE)的AD分类新方法.首先进行图数据建模,将AD数据样本表示为图数据.采用基于互信息(Mutual Information,MI)的特征选择方法,从样本的114维大脑皮层与皮层下感兴趣区域(Cerebral Cortex and Subcortical Regions Of Interest,CCS-ROI)的体积特征中选取重要性高的体积特征,并将其用于节点建模.提出基于相似性度量的关系建模方法,利用重要性高的体积特征、遗传基因、人口统计信息和认知评分对样本之间的关系进行建模.进而构建GraphNAGE,针对每个节点,基于与该节点相关的边的权重进行最近邻域采样,然后使用均值聚合方法对采样得到的邻居节点和中心节点的数据进行聚合,最后通过一个全连接层和一个Softmax层实现AD分类.在TADPOLE(The Alzheimer’s Disease Prediction Of Longitudinal Evolution)数据集上进行实验,结果表明:本文提出的AD分类方法的准确率(ACCuracy,ACC)为98.20%,F_(1)分数为97.34%,曲线下面积(Area Under Curve,AUC)为97.80%.实验结果表明:本文提出的AD分类方法充分利用了AD数据样本之间的相关性,其性能优于传统的基于机器学习、深度学习和图神经网络(Graph Neural Network,GNN)的AD分类方法.