针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指...针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。展开更多
针对三维激光点云线性K最近邻(K-nearest neighbor, KNN)搜索耗时长的问题,提出了一种利用多处理器片上系统(multi-processor system on chip, MPSoC)现场可编程门阵列(field-programmable gate array,FPGA)实现三维激光点云KNN快速搜...针对三维激光点云线性K最近邻(K-nearest neighbor, KNN)搜索耗时长的问题,提出了一种利用多处理器片上系统(multi-processor system on chip, MPSoC)现场可编程门阵列(field-programmable gate array,FPGA)实现三维激光点云KNN快速搜索的方法。首先给出了三维激光点云KNN算法的MPSoC FPGA实现框架;然后详细阐述了每个模块的设计思路及实现过程;最后利用MZU15A开发板和天眸16线旋转机械激光雷达搭建了测试平台,完成了三维激光点云KNN算法MPSoC FPGA加速的测试验证。实验结果表明:基于MPSoC FPGA实现的三维激光点云KNN算法能在保证邻近点搜索精度的情况下,减少邻近点搜索耗时。展开更多
目的采用近红外光谱技术对油莎豆进行分析,并应用化学计量学中识别模式对油莎豆进行产地溯源。方法采用近红外光谱法结合化学计量学软件,对来自河北、湖南、山东、新疆、云南等地408份油莎豆样品进行产地溯源,分别采用多元散射校正、多...目的采用近红外光谱技术对油莎豆进行分析,并应用化学计量学中识别模式对油莎豆进行产地溯源。方法采用近红外光谱法结合化学计量学软件,对来自河北、湖南、山东、新疆、云南等地408份油莎豆样品进行产地溯源,分别采用多元散射校正、多量标准化或多量标准化耦合去趋势算法3种光谱预处理方法和支持向量机(support vector machine,SVM)、簇类独立分类(soft independent modeling of class analogy,SIMCA)、正交偏最小二乘判别(orthogonal partial least squares discriminant analysis,OPLS-DA)、偏最小二乘判别(partial least squares discriminant analysis,PLS-DA)、和K最近邻算法(K-nearest neighbor algorithm,KNN)等5种识别模式进行产地识别。结果SVM、SIMCA、OPLS-DA、PLS-DA和KNN等5种模式的建模识别率分别为91.89%、94.47%、62.37%、65.32%和100.00%。选择KNN作为产地识别模型,分析不同预处理方法、数据预处理及样本距离对模型预测结果稳定性的影响,筛选出最优模型参数。选用多元散射校正光谱预处理方式,在UV标度化、Pareto标度化、自动标度化或中心化任一种数据预处理条件下,样本距离选用街区距离,测试集识别率能达到100.00%。结论近红外光谱结合KNN模式的技术具有分析速度快、操作简单、样本预处理容易、无损、在线的定性定量分析等优点,具有一定应用前景。展开更多
文摘为了改善利用SCATS交通数据估计路段行程时间的效果,通过分析SCATS实际交通数据获取时间间隔不一致的特征,构建了SCATS交通数据虚拟时间序列,将利用因子分析法提取的累计贡献率在85%以上的主因子作为交通模式特征向量的构成要素,用欧氏距离作为当前交通模式特征向量和历史交通模式特征向量相似性的测度指标,以路段行程时间估计误差最小为目标选取当前交通模式的近邻数,对交通模式之间距离的倒数进行归一化处理,确定了相似交通模式的行程时间权重,设计了基于SCATS交通数据的路段行程时间估计方法.实例结果表明:与多元线性回归方法相比,本文方法估计的路段行程时间平均绝对误差、平均绝对百分比误差和均方根误差分别平均减少了9.68 s、8.07%和4.5 s.
文摘针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。
文摘目的采用近红外光谱技术对油莎豆进行分析,并应用化学计量学中识别模式对油莎豆进行产地溯源。方法采用近红外光谱法结合化学计量学软件,对来自河北、湖南、山东、新疆、云南等地408份油莎豆样品进行产地溯源,分别采用多元散射校正、多量标准化或多量标准化耦合去趋势算法3种光谱预处理方法和支持向量机(support vector machine,SVM)、簇类独立分类(soft independent modeling of class analogy,SIMCA)、正交偏最小二乘判别(orthogonal partial least squares discriminant analysis,OPLS-DA)、偏最小二乘判别(partial least squares discriminant analysis,PLS-DA)、和K最近邻算法(K-nearest neighbor algorithm,KNN)等5种识别模式进行产地识别。结果SVM、SIMCA、OPLS-DA、PLS-DA和KNN等5种模式的建模识别率分别为91.89%、94.47%、62.37%、65.32%和100.00%。选择KNN作为产地识别模型,分析不同预处理方法、数据预处理及样本距离对模型预测结果稳定性的影响,筛选出最优模型参数。选用多元散射校正光谱预处理方式,在UV标度化、Pareto标度化、自动标度化或中心化任一种数据预处理条件下,样本距离选用街区距离,测试集识别率能达到100.00%。结论近红外光谱结合KNN模式的技术具有分析速度快、操作简单、样本预处理容易、无损、在线的定性定量分析等优点,具有一定应用前景。