Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular ...Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular systems,heat transfer and thermal management systems improve efficiency using porous materials with variable porosity.Keeping these important applications in view,in current study blood-based hybrid nanofluid flow has considered on a convectively heated sheet.The sheet exhibits the properties of a porous medium with variable porosity and extends in both the x and y directions.Blood has used as base fluid in which the nanoparticles of Cu and Cu O have been mixed.Thermal radiation,space-dependent,and thermal-dependent heat sources have been incorporated into the energy equation,while magnetic effects have been integrated into the momentum equations.Dimensionless variables have employed to transform the modeled equations into dimensionless form and facilitating their solution using bvp4c approach.It has concluded in this study that,both the primary and secondary velocities augmented with upsurge in variable porous factor and declined with escalation in stretching ratio,Casson,magnetic,and slip factors along x-and y-axes.Thermal distribution has grown up with upsurge in Casson factor,magnetic factor,thermal Biot number,and thermal/space-dependent heat sources while has retarded with growth in variable porous and stretching ratio factors.The findings of this investigation have been compared with the existing literature,revealing a strong agreement among present and established results that ensured the validation of the model and method used in this work.展开更多
Despite advances in renewable energy sources, the world's current infrastructure and consumption patterns still heavily depend on crude oil. Enhanced oil recovery(EOR) is a crucial method for significantly increas...Despite advances in renewable energy sources, the world's current infrastructure and consumption patterns still heavily depend on crude oil. Enhanced oil recovery(EOR) is a crucial method for significantly increasing the amount of crude oil extracted from mature and declining oil fields. Nanomaterials have shown great potential in improving EOR methods due to their unique properties, such as high surface area, tunable surface chemistry, and the ability to interact at the molecular level with fluids and rock surfaces. This study examines the potential use of incorporating ethoxylated molybdenum disulfide with a unique three-dimensional flower-like morphology for overcoming the challenges associated with oil recovery from reservoirs characterized by complex pore structures and low permeability. The synthesized nanomaterial features a chemical composition that encompasses a polar ethoxy group linking molybdenum disulfide nanosheets and an alkylamine chain. The ethoxy group promotes interactions with water molecules through hydrogen bonding and electrostatic forces, disrupting the cohesive forces among water molecules and reduction surface tension at the oil-water interface. As a result, the nanomaterial achieves an ultra-low interfacial tension of 10^(-3) mN/m. Core flooding experiments demonstrate a significant oil recovery of approximately 70% at a concentration as low as 50 ppm. This research paves the way for the design and synthesis of advanced extended surfactant-like nanomaterials,offering a promising avenue for enhancing oil recovery efficiency.展开更多
We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the correspon...We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable.展开更多
Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study ...Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.展开更多
In this article, the unsteady magnetohydrodynamic (MHD) stagnation point flow and heat transfer of a nanofluid over a stretching/shrinking sheet is investigated numerically. The similarity solution is used to reduce...In this article, the unsteady magnetohydrodynamic (MHD) stagnation point flow and heat transfer of a nanofluid over a stretching/shrinking sheet is investigated numerically. The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations which are then solved numerically using the fourth-order Runge-Kutta method with shooting technique. The ambient fluid velocity, stretching/shrinking velocity of sheet, and the wall temperature are assumed to vary linearly with the distance from the stagnation point. To investigate the influence of various pertinent parameters, graphical results for the local Nusselt number, the skin friction coefficient, velocity profile, and temperature profile are presented for different values of the governing parameters for three types of nanoparticles, namely copper, alumina, and titania in the water-based fluid. It is found that the dual solution exists for the decelerating flow. Numerical results show that the extent of the dual solution domain increases with the increases of velocity ratio, magnetic parameter, and permeability parameter whereas it remains constant as the value of solid volume fraction of nanoparticles changes. Also, it is found that permeability parameter has a greater effect on the flow and heat transfer of a nanofluid than the magnetic parameter.展开更多
To improve the efficiency of coal seam water injection,the influence of nanofluids on coal surface wettability was studied based on the nano drag reduction and injection enhancement technology in the field of tertiary...To improve the efficiency of coal seam water injection,the influence of nanofluids on coal surface wettability was studied based on the nano drag reduction and injection enhancement technology in the field of tertiary oil recovery.The composition optimization and performance evaluation of nanofluids with nano-silica and sodium lauryl sulfate as the main components were carried out,and the effects of the nanofluid with the optimal ratio on coal wettability were studied through spontaneous upward imbibition experiments.The results show that the composite nanofluid has a lower surface tension,and the lowest value of the interfacial tension is 15.79 m N/m.Therefore,the composite nanofluid can enhance the wettability of coal.However,its effects on coal samples with different metamorphic degrees is different,that is,low rank coal is the largest,middle rank coal is the second,and high rank coal is the least.In addition,a functional relationship between time and imbibition height is found for pulverized coal with different particle sizes.When the particle size of pulverized coal is 60–80 mesh,the wettability of nanofluid to coal is best.The findings in this paper provide a new perspective for improving the water injection efficiency for coal seams with low permeability.展开更多
This article concentrates on the steady magnetohydrodynamic (MHD) flow of viscous nanofluid. The flow is caused by a permeable exponentially stretching surface. An incompressible fluid fills the porous space. A comp...This article concentrates on the steady magnetohydrodynamic (MHD) flow of viscous nanofluid. The flow is caused by a permeable exponentially stretching surface. An incompressible fluid fills the porous space. A comparative study is made for the nanoparticles namely Copper (Cu), Silver (Ag), Alumina (A1203) and Titanium Oxide (TiO2). Water is treated as a base fluid. Convective type boundary conditions are employed in modeling the heat transfer process. The non-linear partial differential equations governing the flow are reduced to an ordinary differential equation by similarity transformations. The obtained equations are then solved for the development of series solutions. Convergence of the obtained series solutions is explicitly discussed. The effects of different parameters on the velocity and temperature profiles are shown and analyzed through graphs.展开更多
Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid(VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid(VBF, behaves drag reduction at turbulent flow state) can...Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid(VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid(VBF, behaves drag reduction at turbulent flow state) can reduce turbulent flow resistance as compared with water and enhance heat transfer as compared with VBF. Direct numerical simulation(DNS) is performed in this study to explore the mechanisms of heat transfer enhancement(HTE) and flow drag reduction(DR) for the VFBN turbulent flow. The Giesekus model is used as the constitutive equation for VFBN. Our previously proposed thermal dispersion model is adopted to take into account the thermal dispersion effects of nanoparticles in the VFBN turbulent flow. The DNS results show similar behaviors for flow resistance and heat transfer to those obtained in our previous experiments. Detailed analyses are conducted for the turbulent velocity, temperature, and conformation fields obtained by DNSs for different fluid cases, and for the friction factor with viscous, turbulent, and elastic contributions and heat transfer rate with conductive, turbulent and thermal dispersion contributions of nanoparticles, respectively. The mechanisms of HTE and DR of VFBN turbulent flows are then discussed. Based on analogy theory, the ratios of Chilton–Colburn factor to friction factor for different fluid flow cases are investigated, which from another aspect show the significant enhancement in heat transfer performance for some cases of water-based nanofluid and VFBN turbulent flows.展开更多
In recent years fluids containing suspension of nanometer sized particles have been an active area of research due to their enhanced thermo physical properties over the base fluids like water,oil etc.Nanofluids posses...In recent years fluids containing suspension of nanometer sized particles have been an active area of research due to their enhanced thermo physical properties over the base fluids like water,oil etc.Nanofluids possess immense potential applications to improve heat transfer and energy efficient in several areas including automobile,micro electronics,nuclear,space and power generation.Nowadays most of the researchers are trying to use the nanofluids in automobile for various applications such as coolant,fuel additives,lubricant,shock absorber and refrigerant.The goal of this paper is to create the awareness on the promise of nanofluids and the impact it will have on the future automotive industry.This paper also presents a comprehensive data of nanofluids application in automobile for various aspects.展开更多
We studied the relationship between corona structure and properties of solvent-free Fe3O4 nanofluids. We proposed a series of corona structures with different branched chains and synthesize different solvent-free nano...We studied the relationship between corona structure and properties of solvent-free Fe3O4 nanofluids. We proposed a series of corona structures with different branched chains and synthesize different solvent-free nanofluids in order to show the effect of corona structure on the phase behavior, dispersion, as well as rheology properties. Results demonstrate novel liquid-like behaviors without solvent at room temperature. Fe3O4 magnetic nanoparticles content is bigger than 8% and its size is about 23 nm. For the solvent-free nanofluids,the long chain corona has the internal plasticization, which can decrease the loss modulus of system, while the short chain of corona results in the high viscosity of nanofluids. Long alkyl chains of modifiers lead to lower viscosity and better flowability of nanofluids. The rheology and viscosity of the nanofluids are correlated to the microscopic structure of the corona, which provide an in-depth insight into the preparing nanofluids with promising applications based on their tunable and controllable physical properties.展开更多
The present study inspects the non-aligned stagnation point nano fluid over a convective surface in the presence of partial slip. Two types of base fluids namely water and kerosene are selected with Cu nanoparticles. ...The present study inspects the non-aligned stagnation point nano fluid over a convective surface in the presence of partial slip. Two types of base fluids namely water and kerosene are selected with Cu nanoparticles. The governing physical problem is presented and transformed into a system of coupled nonlinear differential equations using suitable similarity transformations. These equations are then solved numerically using midpoint integration scheme along with Richardson extrapolation via Maple. Impact of relevant physical parameters on the dimensionless velocity and temperature profiles are portrayed through graphs. Physical quantities such as local skin frictions co-efficient and Nusselt numbers are tabularized.It is detected from numerical computations that kerosene-based nano fluids have better heat transfer capability compared with water-based nanofluids. Moreover it is found that water-based nanofluids offer less resistance in terms of skin friction than kerosene-based fluid. In order to authenticate our present study, the calculated results are compared with the prevailing literature and a considerable agreement is perceived for the limiting case.展开更多
Nanofluids or liquids with suspended nanoparticles are likely to be the future heat transfer media, as they exhibit higher thermal conductivity than those of liquids. It has been proposed that nanoparticles are apt to...Nanofluids or liquids with suspended nanoparticles are likely to be the future heat transfer media, as they exhibit higher thermal conductivity than those of liquids. It has been proposed that nanoparticles are apt to congregate and form clusters, and hence the interaction between nanoparticles becomes important. In this paper, by taking into account the interaction between nearest-neighbour inclusions, we adopt the multiple image method to investigate the effective thermal conductivity of nanofluids. Numerical results show that then the thermal conductivity ratio between the nanoparticles and fluids is large, and the two nanoparticles are close up and even touch, and the polnt-dipole theory such as Maxwell-Garnett theory becomes rough as many-body interactions are neglected. Our theoretical results on the effective thermal conductivity of CuO/water and Al2O3/water nanofluids are in good agreement with experimental data.展开更多
Due to the low porosity and low permeability in unconventional reservoirs,a large amount of crude oil is trapped in micro-to nano-sized pores and throats,which leads to low oil recovery.Nanofluids have great potential...Due to the low porosity and low permeability in unconventional reservoirs,a large amount of crude oil is trapped in micro-to nano-sized pores and throats,which leads to low oil recovery.Nanofluids have great potential to enhance oil recovery(EOR)in low permeability reservoirs.In this work,the regulating ability of a nanofluid at the oil/water/solid three-phase interface was explored.The results indicated that the nanofluid reduced the oil/water interfacial tension by two orders of magnitude,and the expansion modulus of oil/water interface was increased by 77% at equilibrium.In addition,the solid surface roughness was reduced by 50%,and the three-phase contact angle dropped from 135(oil-wet)to 48(water-wet).Combining the displacement experiments using a 2.5D reservoir micromodel and a microchannel model,the remaining oil mobilization and migration processes in micro-to nano-scale pores and throats were visualized.It was found that the nanofluid dispersed the remaining oil into small oil droplets and displaced them via multiple mechanisms in porous media.Moreover,the high strength interface film formed by the nanofluid inhibited the coalescence of oil droplets and improved the flowing ability.These results help to understand the EOR mechanisms of nanofluids in low permeability reservoirs from a visual perspective.展开更多
The global carbon neutrality strategy brings a wave of rechargeable lithium‐ion batteries technique development and induces an ever-growing consumption and demand for lithium(Li).Among all the Li exploitation,extract...The global carbon neutrality strategy brings a wave of rechargeable lithium‐ion batteries technique development and induces an ever-growing consumption and demand for lithium(Li).Among all the Li exploitation,extracting Li from spent LIBs would be a strategic and perspective approach,especially with the low energy consumption and eco-friendly membrane separation method.However,current membrane separation systems mainly focus on monotonous membrane design and structure optimization,and rarely further consider the coordination of inherent structure and applied external field,resulting in limited ion transport.Here,we propose a heterogeneous nanofluidic membrane as a platform for coupling multi-external fields(i.e.,lightinduced heat,electrical,and concentration gradient fields)to construct the multi-field-coupled synergistic ion transport system(MSITS)for Li-ion extraction from spent LIBs.The Li flux of the MSITS reaches 367.4 mmol m^(−2)h^(−1),even higher than the sum flux of those applied individual fields,reflecting synergistic enhancement for ion transport of the multi-field-coupled effect.Benefiting from the adaptation of membrane structure and multi-external fields,the proposed system exhibits ultrahigh selectivity with a Li^(+)/Co^(2+)factor of 216,412,outperforming previous reports.MSITS based on nanofluidic membrane proves to be a promising ion transport strategy,as it could accelerate ion transmembrane transport and alleviate the ion concentration polarization effect.This work demonstrated a collaborative system equipped with an optimized membrane for high-efficient Li extraction,providing an expanded strategy to investigate the other membrane-based applications of their common similarities in core concepts.展开更多
Nanofluids because of their surface characteristics improve the oil production from reservoirs by enabling different enhanced recovery mechanisms such as wettability alteration,interfacial tension(IFT)reduction,oil vi...Nanofluids because of their surface characteristics improve the oil production from reservoirs by enabling different enhanced recovery mechanisms such as wettability alteration,interfacial tension(IFT)reduction,oil viscosity reduction,formation and stabilization of colloidal systems and the decrease in the asphaltene precipitation.To the best of the authors’ knowledge,the synthesis of a new nanocomposite has been studied in this paper for the first time.It consists of nanoparticles of both SiO2 and Fe3O4.Each nanoparticle has its individual surface property and has its distinct effect on the oil production of reservoirs.According to the previous studies,Fe3O4 has been used in the prevention or reduction of asphaltene precipitation and SiO2 has been considered for wettability alteration and/or reducing IFTs in enhanced oil recovery.According to the experimental results,the novel synthesized nanoparticles have increased the oil recovery by the synergistic effects of the formed particles markedly by activating the various mechanisms relative to the use of each of the nanoparticles in the micromodel individually.According to the results obtained for the use of this nanocomposite,understanding reservoir conditions plays an important role in the ultimate goal of enhancing oil recovery and the formation of stable emulsions plays an important role in oil recovery using this method.展开更多
Improvement of the heat transfer of the cold side is one of the approaches to enhance the performance of TEG systems. As a new type of heat transfer media, nanofluids can enhance the heat transfer performance of worki...Improvement of the heat transfer of the cold side is one of the approaches to enhance the performance of TEG systems. As a new type of heat transfer media, nanofluids can enhance the heat transfer performance of working liquid signiticantly. Based on a three-dimensional and steady-state numerical model,the heat transfer and thermoelectric conversion properties of TEG systems were studied. Graphene anoplatelet aqueous nanoftuids were used as the coolants for the cold side of the TEG system to improve the heat transfer capacity of the cold side. The results showed that the heat absorbed by the hot side, voltage, output power, and conversion efficiency of the TEG system were increased greatly by the nanoftuid coolants. The output power and the conversion efficiency using 0.1-wt% graphene nanoplatelet aqueous nanofluid as the coolant are enhanced by 26.39% and 14.74%, respectively.展开更多
A numerical study is performed to investigate the flow and heat transfer at the surface of a permeable wedge immersed in a copper (Cu)-water-based nanofluid in the presence of magnetic field and viscous dissipation ...A numerical study is performed to investigate the flow and heat transfer at the surface of a permeable wedge immersed in a copper (Cu)-water-based nanofluid in the presence of magnetic field and viscous dissipation using a nanofluid model proposed by Tiwari and Das (Tiwari I K and Das M K 2007 Int. J. HeatMass Transfer 50 2002). A similarity solution for the transformed governing equation is obtained, and those equations are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. A comparison with previously published work is carried out and shows that they are in good agreement with each other. The effects of velocity ratio parameter ~, solid volume fraction tp, magnetic field M, viscous dissipation Ec, and suction parameter Fw on the fluid flow and heat transfer characteristics are discussed. The unique and dual solutions for self-similar equations of the flow and heat transfer are analyzed numerically. Moreover, the range of the velocity ratio parameter for which the solution exists increases in the presence of magnetic field and suction parameter.展开更多
Nanofluids(NFs) are nanotechnology-based colloidal suspensions fabricated by suspending nanoparticles(NPs) in a base liquid. These fluids have shown potential to improve the heat transfer properties of conventional he...Nanofluids(NFs) are nanotechnology-based colloidal suspensions fabricated by suspending nanoparticles(NPs) in a base liquid. These fluids have shown potential to improve the heat transfer properties of conventional heat transfer fluids. In this study we report in detail on fabrication, characterization and thermo-physical property evaluation of SiC NFs, prepared using SiC NPs with different crystal structures,for heat transfer applications. For this purpose, a series of SiC NFs containing SiC NPs with different crystal structure(α-SiC and β-SiC) were fabricated in a water(W)/ethylene glycol(EG) mixture(50/50 wt%ratio). Physicochemical properties of NPs/NFs were characterized by using various techniques, such as powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM),Fouriertransform infrared spectroscopy(FTIR), dynamic light scattering(DLS) and Zeta potential analysis.Thermo-physical properties including thermal conductivity(TC) and viscosity for NFs containing SiC particles(α- and β- phase) weremeasured. The results show among all suspensions NFs fabricated with α-SiC particles have more favorable thermo-physical properties compared to the NFs fabricated with β-SiC.The observed difference is attributed to combination of several factors, including crystal structure(β- vs. α-), sample purity,and residual chemicals exhibited on SiC NFs. A TC enhancement of ~20% while 14% increased viscosity were obtained for NFs containing 9 wt% of particular type of α-SiC NPs indicating promising capability of this kind of NFs for further heat transfer characteristics investigation.展开更多
This paper presents a numerical study on the simultaneous reconstruction of temperature and volume fraction fields of soot and metal-oxide nanoparticles in an axisymmetric nanofluid fuel sooting flame based on the rad...This paper presents a numerical study on the simultaneous reconstruction of temperature and volume fraction fields of soot and metal-oxide nanoparticles in an axisymmetric nanofluid fuel sooting flame based on the radiative energy images captured by a charge-coupled device(CCD)camera.The least squares QR decomposition method was introduced to deal with the reconstruction inverse problem.The effects of ray numbers and measurement errors on the reconstruction accuracy were investigated.It was found that the reconstruction accuracies for volume fraction fields of soot and metaloxide nanoparticles were easily affected by the measurement errors for radiation intensity,whereas only the metal-oxide volume fraction field reconstruction was more sensitive to the measurement error for the volume fraction ratio of metaloxide nanoparticles to soot.The results show that the temperature,soot volume fraction,and metal-oxide nanoparticles volume fraction fields can be simultaneously and accurately retrieved for exact and noisy data using a single CCD camera.展开更多
Analytical expressions for nucleate pool boiling heat transfer of nanofluid in the critical heat flux (CHF) region are derived taking into account the effect of nanoparticles moving in liquid based on the fractal ge...Analytical expressions for nucleate pool boiling heat transfer of nanofluid in the critical heat flux (CHF) region are derived taking into account the effect of nanoparticles moving in liquid based on the fractal geometry theory. The proposed fractal model for the CHF of nanofluid is explicitly related to the average diameter of the nanoparticles, the volumetric nanoparticle concentration, the thermal conductivity of nanoparticles, the fractal dimension of nanoparticles, the fractal dimension of active cavities on the heated surfaces, the temperature, and the properties of the fluid. It is found that the CHF of nanofluid decreases with the increase of the average diameter of nanoparticles. Each parameter of the proposed formulas on CHF has a clear physical meaning. The model predictions are compared with the existing experimental data, and a good agreement between the model predictions and experimental data is found. The validity of the present model is thus verified. The proposed fractal model can reveal the mechanism of heat transfer in nanofluid.展开更多
基金supported via funding from Prince Sattam bin Abdulaziz University(Grant No.PSAU/2024/R/1446)。
文摘Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular systems,heat transfer and thermal management systems improve efficiency using porous materials with variable porosity.Keeping these important applications in view,in current study blood-based hybrid nanofluid flow has considered on a convectively heated sheet.The sheet exhibits the properties of a porous medium with variable porosity and extends in both the x and y directions.Blood has used as base fluid in which the nanoparticles of Cu and Cu O have been mixed.Thermal radiation,space-dependent,and thermal-dependent heat sources have been incorporated into the energy equation,while magnetic effects have been integrated into the momentum equations.Dimensionless variables have employed to transform the modeled equations into dimensionless form and facilitating their solution using bvp4c approach.It has concluded in this study that,both the primary and secondary velocities augmented with upsurge in variable porous factor and declined with escalation in stretching ratio,Casson,magnetic,and slip factors along x-and y-axes.Thermal distribution has grown up with upsurge in Casson factor,magnetic factor,thermal Biot number,and thermal/space-dependent heat sources while has retarded with growth in variable porous and stretching ratio factors.The findings of this investigation have been compared with the existing literature,revealing a strong agreement among present and established results that ensured the validation of the model and method used in this work.
基金funded by the National Natural Science Foundation of China (No. 52174046)。
文摘Despite advances in renewable energy sources, the world's current infrastructure and consumption patterns still heavily depend on crude oil. Enhanced oil recovery(EOR) is a crucial method for significantly increasing the amount of crude oil extracted from mature and declining oil fields. Nanomaterials have shown great potential in improving EOR methods due to their unique properties, such as high surface area, tunable surface chemistry, and the ability to interact at the molecular level with fluids and rock surfaces. This study examines the potential use of incorporating ethoxylated molybdenum disulfide with a unique three-dimensional flower-like morphology for overcoming the challenges associated with oil recovery from reservoirs characterized by complex pore structures and low permeability. The synthesized nanomaterial features a chemical composition that encompasses a polar ethoxy group linking molybdenum disulfide nanosheets and an alkylamine chain. The ethoxy group promotes interactions with water molecules through hydrogen bonding and electrostatic forces, disrupting the cohesive forces among water molecules and reduction surface tension at the oil-water interface. As a result, the nanomaterial achieves an ultra-low interfacial tension of 10^(-3) mN/m. Core flooding experiments demonstrate a significant oil recovery of approximately 70% at a concentration as low as 50 ppm. This research paves the way for the design and synthesis of advanced extended surfactant-like nanomaterials,offering a promising avenue for enhancing oil recovery efficiency.
基金LMP acknowledges financial support from ANID through Convocatoria Nacional Subvención a Instalación en la Academia Convocatoria Año 2021,Grant SA77210040。
文摘We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable.
基金funded by King Mongkut’s University of Technology North Bangkok with Contract no.KMUTNB-Post-65-07。
文摘Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.
文摘In this article, the unsteady magnetohydrodynamic (MHD) stagnation point flow and heat transfer of a nanofluid over a stretching/shrinking sheet is investigated numerically. The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations which are then solved numerically using the fourth-order Runge-Kutta method with shooting technique. The ambient fluid velocity, stretching/shrinking velocity of sheet, and the wall temperature are assumed to vary linearly with the distance from the stagnation point. To investigate the influence of various pertinent parameters, graphical results for the local Nusselt number, the skin friction coefficient, velocity profile, and temperature profile are presented for different values of the governing parameters for three types of nanoparticles, namely copper, alumina, and titania in the water-based fluid. It is found that the dual solution exists for the decelerating flow. Numerical results show that the extent of the dual solution domain increases with the increases of velocity ratio, magnetic parameter, and permeability parameter whereas it remains constant as the value of solid volume fraction of nanoparticles changes. Also, it is found that permeability parameter has a greater effect on the flow and heat transfer of a nanofluid than the magnetic parameter.
基金supported by the National Natural Science Foundation of China(Nos.51974176,51934004,52174194)the Shandong Province Natural Science Foundation of Outstanding Youth Fund(ZR2020JQ22)+1 种基金the Shandong Province Colleges and Universities Youth Innovation and Technology Support Program(2019KJH006)the Special funds for Taishan scholar project(TS20190935)。
文摘To improve the efficiency of coal seam water injection,the influence of nanofluids on coal surface wettability was studied based on the nano drag reduction and injection enhancement technology in the field of tertiary oil recovery.The composition optimization and performance evaluation of nanofluids with nano-silica and sodium lauryl sulfate as the main components were carried out,and the effects of the nanofluid with the optimal ratio on coal wettability were studied through spontaneous upward imbibition experiments.The results show that the composite nanofluid has a lower surface tension,and the lowest value of the interfacial tension is 15.79 m N/m.Therefore,the composite nanofluid can enhance the wettability of coal.However,its effects on coal samples with different metamorphic degrees is different,that is,low rank coal is the largest,middle rank coal is the second,and high rank coal is the least.In addition,a functional relationship between time and imbibition height is found for pulverized coal with different particle sizes.When the particle size of pulverized coal is 60–80 mesh,the wettability of nanofluid to coal is best.The findings in this paper provide a new perspective for improving the water injection efficiency for coal seams with low permeability.
基金supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia
文摘This article concentrates on the steady magnetohydrodynamic (MHD) flow of viscous nanofluid. The flow is caused by a permeable exponentially stretching surface. An incompressible fluid fills the porous space. A comparative study is made for the nanoparticles namely Copper (Cu), Silver (Ag), Alumina (A1203) and Titanium Oxide (TiO2). Water is treated as a base fluid. Convective type boundary conditions are employed in modeling the heat transfer process. The non-linear partial differential equations governing the flow are reduced to an ordinary differential equation by similarity transformations. The obtained equations are then solved for the development of series solutions. Convergence of the obtained series solutions is explicitly discussed. The effects of different parameters on the velocity and temperature profiles are shown and analyzed through graphs.
基金supported by the National Natural Science Foundation of China(Grant No.51276046)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20112302110020)+1 种基金the China Postdoctoral Science Foundation(Grant No.2014M561037)the President Fund of University of Chinese Academy of Sciences,China(Grant No.Y3510213N00)
文摘Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid(VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid(VBF, behaves drag reduction at turbulent flow state) can reduce turbulent flow resistance as compared with water and enhance heat transfer as compared with VBF. Direct numerical simulation(DNS) is performed in this study to explore the mechanisms of heat transfer enhancement(HTE) and flow drag reduction(DR) for the VFBN turbulent flow. The Giesekus model is used as the constitutive equation for VFBN. Our previously proposed thermal dispersion model is adopted to take into account the thermal dispersion effects of nanoparticles in the VFBN turbulent flow. The DNS results show similar behaviors for flow resistance and heat transfer to those obtained in our previous experiments. Detailed analyses are conducted for the turbulent velocity, temperature, and conformation fields obtained by DNSs for different fluid cases, and for the friction factor with viscous, turbulent, and elastic contributions and heat transfer rate with conductive, turbulent and thermal dispersion contributions of nanoparticles, respectively. The mechanisms of HTE and DR of VFBN turbulent flows are then discussed. Based on analogy theory, the ratios of Chilton–Colburn factor to friction factor for different fluid flow cases are investigated, which from another aspect show the significant enhancement in heat transfer performance for some cases of water-based nanofluid and VFBN turbulent flows.
文摘In recent years fluids containing suspension of nanometer sized particles have been an active area of research due to their enhanced thermo physical properties over the base fluids like water,oil etc.Nanofluids possess immense potential applications to improve heat transfer and energy efficient in several areas including automobile,micro electronics,nuclear,space and power generation.Nowadays most of the researchers are trying to use the nanofluids in automobile for various applications such as coolant,fuel additives,lubricant,shock absorber and refrigerant.The goal of this paper is to create the awareness on the promise of nanofluids and the impact it will have on the future automotive industry.This paper also presents a comprehensive data of nanofluids application in automobile for various aspects.
基金supported by National Natural Science Foundations(51073129 and50971104)Aeronautical Science Foundation of China(2010ZF53060)graduate starting seed fund of Northwestern Polytechnical University(Z2011012)
文摘We studied the relationship between corona structure and properties of solvent-free Fe3O4 nanofluids. We proposed a series of corona structures with different branched chains and synthesize different solvent-free nanofluids in order to show the effect of corona structure on the phase behavior, dispersion, as well as rheology properties. Results demonstrate novel liquid-like behaviors without solvent at room temperature. Fe3O4 magnetic nanoparticles content is bigger than 8% and its size is about 23 nm. For the solvent-free nanofluids,the long chain corona has the internal plasticization, which can decrease the loss modulus of system, while the short chain of corona results in the high viscosity of nanofluids. Long alkyl chains of modifiers lead to lower viscosity and better flowability of nanofluids. The rheology and viscosity of the nanofluids are correlated to the microscopic structure of the corona, which provide an in-depth insight into the preparing nanofluids with promising applications based on their tunable and controllable physical properties.
文摘The present study inspects the non-aligned stagnation point nano fluid over a convective surface in the presence of partial slip. Two types of base fluids namely water and kerosene are selected with Cu nanoparticles. The governing physical problem is presented and transformed into a system of coupled nonlinear differential equations using suitable similarity transformations. These equations are then solved numerically using midpoint integration scheme along with Richardson extrapolation via Maple. Impact of relevant physical parameters on the dimensionless velocity and temperature profiles are portrayed through graphs. Physical quantities such as local skin frictions co-efficient and Nusselt numbers are tabularized.It is detected from numerical computations that kerosene-based nano fluids have better heat transfer capability compared with water-based nanofluids. Moreover it is found that water-based nanofluids offer less resistance in terms of skin friction than kerosene-based fluid. In order to authenticate our present study, the calculated results are compared with the prevailing literature and a considerable agreement is perceived for the limiting case.
基金Project supported by the National Natural Science Foundation of China (Grant No 10204017) and the Natural Science of Jiangsu Province, China (Grant No BK2002038).
文摘Nanofluids or liquids with suspended nanoparticles are likely to be the future heat transfer media, as they exhibit higher thermal conductivity than those of liquids. It has been proposed that nanoparticles are apt to congregate and form clusters, and hence the interaction between nanoparticles becomes important. In this paper, by taking into account the interaction between nearest-neighbour inclusions, we adopt the multiple image method to investigate the effective thermal conductivity of nanofluids. Numerical results show that then the thermal conductivity ratio between the nanoparticles and fluids is large, and the two nanoparticles are close up and even touch, and the polnt-dipole theory such as Maxwell-Garnett theory becomes rough as many-body interactions are neglected. Our theoretical results on the effective thermal conductivity of CuO/water and Al2O3/water nanofluids are in good agreement with experimental data.
基金The authors sincerely appreciate the financial support from the National Natural Science Foundation of China(No.52074249,51874261)Fundamental Research Funds for the Central Universities(2-9-2019-103).
文摘Due to the low porosity and low permeability in unconventional reservoirs,a large amount of crude oil is trapped in micro-to nano-sized pores and throats,which leads to low oil recovery.Nanofluids have great potential to enhance oil recovery(EOR)in low permeability reservoirs.In this work,the regulating ability of a nanofluid at the oil/water/solid three-phase interface was explored.The results indicated that the nanofluid reduced the oil/water interfacial tension by two orders of magnitude,and the expansion modulus of oil/water interface was increased by 77% at equilibrium.In addition,the solid surface roughness was reduced by 50%,and the three-phase contact angle dropped from 135(oil-wet)to 48(water-wet).Combining the displacement experiments using a 2.5D reservoir micromodel and a microchannel model,the remaining oil mobilization and migration processes in micro-to nano-scale pores and throats were visualized.It was found that the nanofluid dispersed the remaining oil into small oil droplets and displaced them via multiple mechanisms in porous media.Moreover,the high strength interface film formed by the nanofluid inhibited the coalescence of oil droplets and improved the flowing ability.These results help to understand the EOR mechanisms of nanofluids in low permeability reservoirs from a visual perspective.
基金supported by the National Key R&D Program of China(2022YFB3805904,2022YFB3805900)the National Natural Science Foundation of China(22122207,21988102,21905287)CAS Project for Young Scientists in Basic Research(YSBR-039).
文摘The global carbon neutrality strategy brings a wave of rechargeable lithium‐ion batteries technique development and induces an ever-growing consumption and demand for lithium(Li).Among all the Li exploitation,extracting Li from spent LIBs would be a strategic and perspective approach,especially with the low energy consumption and eco-friendly membrane separation method.However,current membrane separation systems mainly focus on monotonous membrane design and structure optimization,and rarely further consider the coordination of inherent structure and applied external field,resulting in limited ion transport.Here,we propose a heterogeneous nanofluidic membrane as a platform for coupling multi-external fields(i.e.,lightinduced heat,electrical,and concentration gradient fields)to construct the multi-field-coupled synergistic ion transport system(MSITS)for Li-ion extraction from spent LIBs.The Li flux of the MSITS reaches 367.4 mmol m^(−2)h^(−1),even higher than the sum flux of those applied individual fields,reflecting synergistic enhancement for ion transport of the multi-field-coupled effect.Benefiting from the adaptation of membrane structure and multi-external fields,the proposed system exhibits ultrahigh selectivity with a Li^(+)/Co^(2+)factor of 216,412,outperforming previous reports.MSITS based on nanofluidic membrane proves to be a promising ion transport strategy,as it could accelerate ion transmembrane transport and alleviate the ion concentration polarization effect.This work demonstrated a collaborative system equipped with an optimized membrane for high-efficient Li extraction,providing an expanded strategy to investigate the other membrane-based applications of their common similarities in core concepts.
文摘Nanofluids because of their surface characteristics improve the oil production from reservoirs by enabling different enhanced recovery mechanisms such as wettability alteration,interfacial tension(IFT)reduction,oil viscosity reduction,formation and stabilization of colloidal systems and the decrease in the asphaltene precipitation.To the best of the authors’ knowledge,the synthesis of a new nanocomposite has been studied in this paper for the first time.It consists of nanoparticles of both SiO2 and Fe3O4.Each nanoparticle has its individual surface property and has its distinct effect on the oil production of reservoirs.According to the previous studies,Fe3O4 has been used in the prevention or reduction of asphaltene precipitation and SiO2 has been considered for wettability alteration and/or reducing IFTs in enhanced oil recovery.According to the experimental results,the novel synthesized nanoparticles have increased the oil recovery by the synergistic effects of the formed particles markedly by activating the various mechanisms relative to the use of each of the nanoparticles in the micromodel individually.According to the results obtained for the use of this nanocomposite,understanding reservoir conditions plays an important role in the ultimate goal of enhancing oil recovery and the formation of stable emulsions plays an important role in oil recovery using this method.
基金supported by the Major Program of the National Natural Science Foundation of China(Grant No.51590902)the National Natural Science Foundation of China(Grant N.51476095)+1 种基金the Program for Professor of Special Appointment(Young Eastern Scholar,QD2015052)at Shanghai Institutions of Higher Learningthe Natural Science Foundation of Shanghai(Grant No.14ZR1417000)
文摘Improvement of the heat transfer of the cold side is one of the approaches to enhance the performance of TEG systems. As a new type of heat transfer media, nanofluids can enhance the heat transfer performance of working liquid signiticantly. Based on a three-dimensional and steady-state numerical model,the heat transfer and thermoelectric conversion properties of TEG systems were studied. Graphene anoplatelet aqueous nanoftuids were used as the coolants for the cold side of the TEG system to improve the heat transfer capacity of the cold side. The results showed that the heat absorbed by the hot side, voltage, output power, and conversion efficiency of the TEG system were increased greatly by the nanoftuid coolants. The output power and the conversion efficiency using 0.1-wt% graphene nanoplatelet aqueous nanofluid as the coolant are enhanced by 26.39% and 14.74%, respectively.
文摘A numerical study is performed to investigate the flow and heat transfer at the surface of a permeable wedge immersed in a copper (Cu)-water-based nanofluid in the presence of magnetic field and viscous dissipation using a nanofluid model proposed by Tiwari and Das (Tiwari I K and Das M K 2007 Int. J. HeatMass Transfer 50 2002). A similarity solution for the transformed governing equation is obtained, and those equations are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. A comparison with previously published work is carried out and shows that they are in good agreement with each other. The effects of velocity ratio parameter ~, solid volume fraction tp, magnetic field M, viscous dissipation Ec, and suction parameter Fw on the fluid flow and heat transfer characteristics are discussed. The unique and dual solutions for self-similar equations of the flow and heat transfer are analyzed numerically. Moreover, the range of the velocity ratio parameter for which the solution exists increases in the presence of magnetic field and suction parameter.
基金financial support from the EU (Project Reference: 228882)Swedish Research Council (VR) for the project NanoHex (Enhanced Nano-fluid Heat Exchange)
文摘Nanofluids(NFs) are nanotechnology-based colloidal suspensions fabricated by suspending nanoparticles(NPs) in a base liquid. These fluids have shown potential to improve the heat transfer properties of conventional heat transfer fluids. In this study we report in detail on fabrication, characterization and thermo-physical property evaluation of SiC NFs, prepared using SiC NPs with different crystal structures,for heat transfer applications. For this purpose, a series of SiC NFs containing SiC NPs with different crystal structure(α-SiC and β-SiC) were fabricated in a water(W)/ethylene glycol(EG) mixture(50/50 wt%ratio). Physicochemical properties of NPs/NFs were characterized by using various techniques, such as powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM),Fouriertransform infrared spectroscopy(FTIR), dynamic light scattering(DLS) and Zeta potential analysis.Thermo-physical properties including thermal conductivity(TC) and viscosity for NFs containing SiC particles(α- and β- phase) weremeasured. The results show among all suspensions NFs fabricated with α-SiC particles have more favorable thermo-physical properties compared to the NFs fabricated with β-SiC.The observed difference is attributed to combination of several factors, including crystal structure(β- vs. α-), sample purity,and residual chemicals exhibited on SiC NFs. A TC enhancement of ~20% while 14% increased viscosity were obtained for NFs containing 9 wt% of particular type of α-SiC NPs indicating promising capability of this kind of NFs for further heat transfer characteristics investigation.
基金Project supported by the National Natural Science Foundation of China(Grant No.51576100)the Project of"Six Talent Summit"of Jiangsu Province,China(Grant No.2014-XNY-002)
文摘This paper presents a numerical study on the simultaneous reconstruction of temperature and volume fraction fields of soot and metal-oxide nanoparticles in an axisymmetric nanofluid fuel sooting flame based on the radiative energy images captured by a charge-coupled device(CCD)camera.The least squares QR decomposition method was introduced to deal with the reconstruction inverse problem.The effects of ray numbers and measurement errors on the reconstruction accuracy were investigated.It was found that the reconstruction accuracies for volume fraction fields of soot and metaloxide nanoparticles were easily affected by the measurement errors for radiation intensity,whereas only the metal-oxide volume fraction field reconstruction was more sensitive to the measurement error for the volume fraction ratio of metaloxide nanoparticles to soot.The results show that the temperature,soot volume fraction,and metal-oxide nanoparticles volume fraction fields can be simultaneously and accurately retrieved for exact and noisy data using a single CCD camera.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11102100)the Natural Science Foundation of Fujian Province, China(Grant No. 2012J01017)the Scientific Research Special Foundation for Provincial University of Education Department of Fujian Province, China (Grant No. JK2011056)
文摘Analytical expressions for nucleate pool boiling heat transfer of nanofluid in the critical heat flux (CHF) region are derived taking into account the effect of nanoparticles moving in liquid based on the fractal geometry theory. The proposed fractal model for the CHF of nanofluid is explicitly related to the average diameter of the nanoparticles, the volumetric nanoparticle concentration, the thermal conductivity of nanoparticles, the fractal dimension of nanoparticles, the fractal dimension of active cavities on the heated surfaces, the temperature, and the properties of the fluid. It is found that the CHF of nanofluid decreases with the increase of the average diameter of nanoparticles. Each parameter of the proposed formulas on CHF has a clear physical meaning. The model predictions are compared with the existing experimental data, and a good agreement between the model predictions and experimental data is found. The validity of the present model is thus verified. The proposed fractal model can reveal the mechanism of heat transfer in nanofluid.