The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating i...The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating is stu died by weight loss test, inductively copuled plasma quantometer (ICP), scanning electron microscopy (SEM) and X ray diffraction (XRD), respectively. It is found that under the same electrodeposition conditions, the corrosion resistance of the nanocomposite coating increases obviously while that of the micron composite coating only improves slightly; The ceria content of the nanocomposite coating is more than that of the micron composite coating. Ceria nanoparticles modify the surface morphology and crystal structure of the zinc matrix in correlation with the increase of corrosion resistance.展开更多
The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating i...The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating is stu died by weight loss test, inductively copuled plasma quantometer (ICP), scanning electron microscopy (SEM) and X ray diffraction (XRD), respectively. It is found that under the same electrodeposition conditions, the corrosion resistance of the nanocomposite coating increases obviously while that of the micron composite coating only improves slightly; The ceria content of the nanocomposite coating is more than that of the micron composite coating. Ceria nanoparticles modify the surface morphology and crystal structure of the zinc matrix in correlation with the increase of corrosion resistance.展开更多
To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to succe...To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability.展开更多
文摘The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating is stu died by weight loss test, inductively copuled plasma quantometer (ICP), scanning electron microscopy (SEM) and X ray diffraction (XRD), respectively. It is found that under the same electrodeposition conditions, the corrosion resistance of the nanocomposite coating increases obviously while that of the micron composite coating only improves slightly; The ceria content of the nanocomposite coating is more than that of the micron composite coating. Ceria nanoparticles modify the surface morphology and crystal structure of the zinc matrix in correlation with the increase of corrosion resistance.
文摘The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating is stu died by weight loss test, inductively copuled plasma quantometer (ICP), scanning electron microscopy (SEM) and X ray diffraction (XRD), respectively. It is found that under the same electrodeposition conditions, the corrosion resistance of the nanocomposite coating increases obviously while that of the micron composite coating only improves slightly; The ceria content of the nanocomposite coating is more than that of the micron composite coating. Ceria nanoparticles modify the surface morphology and crystal structure of the zinc matrix in correlation with the increase of corrosion resistance.
基金supported by the National Natural Science Foundation of China (Grant No.22005143)Young Elite Scientists Sponsorship Program by CAST (Grant No.2022QNRC001)。
文摘To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability.