期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes 被引量:10
1
作者 Chunmei Zhu Ying He +3 位作者 Yijun Liu Natalia Kazantseva Petr Saha Qilin Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期124-131,I0005,共9页
Hierarchical ZnO@metal-organic framework @polyaniline(ZnO@MOF@PANI) core-shell nanorod arrays on carbon cloth has been fabricated by combining electrodeposition and hydrothermal method. Well-ordered Zn O nanorods not ... Hierarchical ZnO@metal-organic framework @polyaniline(ZnO@MOF@PANI) core-shell nanorod arrays on carbon cloth has been fabricated by combining electrodeposition and hydrothermal method. Well-ordered Zn O nanorods not only act as a scaffold for growth of MOF/PANI shell but also as Zn source for the formation of MOF. The morphology of ZnO@MOF@PANI composite is greatly influenced by the number of PANI electrodeposition cycles. Their structural and electrochemical properties were characterized with different techniques. The results indicate that the Zn O@MOF@PANI with 13 CV cycles of PANI deposition demonstrates the maximum specific capacitance of 340.7 F g-1 at 1.0 A g-1, good rate capability with84.3% capacitance retention from 1.0 to 10 A g-1 and excellent cycling life of 82.5% capacitance retention after 5000 cycles at high current density of 2.0 A g-1. This optimized core-shell nanoarchitecture endows the composite electrode with short ion diffusion pathway, rapid ion/electron transfer and high utilization of active materials, which thus result in excellent electrochemical performance of the ternary composite. 展开更多
关键词 Metal-oragnic framework POLYANILINE CORE-SHELL nanoarrays SUPERCAPACITOR Electrochemical properties
在线阅读 下载PDF
A 3D conducting scaffold with in-situ grown lithiophilic Ni_(2)P nanoarrays for high stability lithium metal anodes 被引量:2
2
作者 Huai Jiang Hailin Fan +6 位作者 Zexun Han Bo Hong Feixiang Wu Kai Zhang Zhian Zhang Jing Fang Yanqing Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期301-309,共9页
Lithium(Li)metal is the most potential anode material for the next-generation high-energy rechargeable batteries.However,intrinsic surface unevenness and‘hostless’nature of Li metal induces infinite volume effect an... Lithium(Li)metal is the most potential anode material for the next-generation high-energy rechargeable batteries.However,intrinsic surface unevenness and‘hostless’nature of Li metal induces infinite volume effect and uncontrollable dendrite growth.Herein,we design the in-situ grown lithiophilic Ni_(2)P nanoarrays inside nickel foam(PNF).Uniform Ni_(2)P nanoarrays coating presents a very low nucleation overpotential,which induces the homogeneous Li deposition in the entire spaces of three-dimensional(3D)metal framework.Specifically,the lithiophilic Ni_(2)P nanoarrays possess characteristics of electrical conductivity and structural stability,which have almost no expansion and damage during repeating Li plating/stripping.Therefore,they chronically inhibit the growth of Li dendrites.This results in an outstanding Coulombic efficiency(CE)of 98% at 3 mA cm^(-2) and an ultra long cycling life over 2000 cycles with a low overpotential.Consequently,the PNF-Li||LiFePO_(4) battery maintains a capacity retention of 95.3% with a stable CE of 99.9% over 500 cycles at 2 C. 展开更多
关键词 Li metal anodes Ni_(2)P nanoarrays 3D metal framework Uniform Li deposition Superior lithiophilicity
在线阅读 下载PDF
Facile fabrication of hierarchical porous Co_3O_4 nanoarrays as a free-standing cathode for lithium–oxygen batteries 被引量:1
3
作者 Yanbiao Ren Shuang Zhao +3 位作者 Honglei Li Shichao Zhang Jian Liu Yao Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第3期63-70,共8页
Two shapes of Co_3O_4 nanoarrays(i.e., nanosheets, nanowires) with different densities of exposed catalytic active sites were synthesized through a facile hydrothermal method on Ni foam substrates and tested as the bi... Two shapes of Co_3O_4 nanoarrays(i.e., nanosheets, nanowires) with different densities of exposed catalytic active sites were synthesized through a facile hydrothermal method on Ni foam substrates and tested as the binder/carbon free and free-standing cathodes for Li–O_2 batteries. Particularly, the single crystalline feature of Co_3O_4 nanosheets with a predominant high reactivity {112} exposed crystal plane and hierarchical porous nanostructure displayed better catalytic performance for both oxygen reduction reaction(during discharge process) and oxygen evolution reaction(during charge process). Li–O_2 battery with Co_3O_4 nanosheets cathode exhibited a higher discharge specific capacity(965 m Ah g^(-1)), lower discharge/charge over-potential and better cycling performance over 63 cycles at 100 mA g^(-1) with the specific capacity limited at 300 mAh g^(-1). The superior catalytic performance of Co_3O_4 nanosheets cathode is ascribed to the enlarging specific area and increasing the exposed Co^(3+) catalytic active sites within predominant {112} crystal plane which plays the key role in determining the adsorption energy for the reactants, enabling high round-trip efficiency and cyclic life. 展开更多
关键词 COBALT oxide FREE-STANDING catalyst Binder/carbon free nanoarrays Over-potential CYCLIC life
在线阅读 下载PDF
In situ confined vertical growth of Co_(2.5)Ni_(0.5)Si_(2)O_(5)(OH)_(4)nanoarrays on rGO for an efficient oxygen evolution reaction 被引量:1
4
作者 Yang Mu Xiaoyu Pei +5 位作者 Yunfeng Zhao Xueying Dong Zongkui Kou Miao Cui Changgong Meng Yifu Zhang 《Nano Materials Science》 EI CAS CSCD 2023年第4期351-360,共10页
Rational design of oxygen evolution reaction(OER)catalysts at low cost would greatly benefit the economy.Taking advantage of earth-abundant elements Si,Co and Ni,we produce a unique-structure where cobalt-nickel silic... Rational design of oxygen evolution reaction(OER)catalysts at low cost would greatly benefit the economy.Taking advantage of earth-abundant elements Si,Co and Ni,we produce a unique-structure where cobalt-nickel silicate hydroxide[Co_(2.5)Ni_(0.5)Si_(2)O_(5)(OH)_(4)]is vertically grown on a reduced graphene oxide(rGO)support(CNS@rGO).This is developed as a low-cost and prospective OER catalyst.Compared to cobalt or nickel silicate hydroxide@rGO(CS@rGO and NS@rGO,respectively)nanoarrays,the bimetal CNS@rGO nanoarray exhibits impressive OER performance with an overpotential of 307 mV@10 mA cm^(-2).This value is higher than that of CS@rGO and NS@rGO.The CNS@rGO nanoarray has an overpotential of 446 mV@100 mA cm^(-2),about 1.4 times that of the commercial RuO_(2)electrocatalyst.The achieved OER activity is superior to the state-of-the-art metal oxides/hydroxides and their derivatives.The vertically grown nanostructure and optimized metal-support electronic interactions play an indispensable role for OER performance improvement,including a fast electron transfer pathway,short proton/electron diffusion distance,more active metal centers,as well as optimized dualatomic electron density.Taking advantage of interlay chemical regulation and the in-situ growth method,the advanced-structural CNS@rGO nanoarrays provide a new horizon to the rational and flexible design of efficient and promising OER electrocatalysts. 展开更多
关键词 Co_(2.5)Ni_(0.5)Si_(2)O_(5)(OH)_(4)@rGO Vertical grown nanoarrays Geometric and electronic structure regulation Metal-support interactions Oxygen evolution reaction
在线阅读 下载PDF
Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
5
作者 Rui Tang Yang Xu +1 位作者 Hong Zhang Xin-Lu Cheng 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期530-536,共7页
We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene(DVDGr)and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with p... We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene(DVDGr)and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with pure and mixed noble/transition-metal nanoarrays can produce a stronger light absorption due to the coherent resonance of plasmons than graphene nanostructures. Comparing with the mixed Au/Pd nanoarrays, pure Au nanoarrays have stronger plasmonic enhancement. Furthermore, harmonics from the hybrid nanostructures exposed to the combination of lasers ranged from ultraviolet to infrared and a controlling pulse are investigated theoretically. The harmonic plateau can be broadened significantly and the energy of harmonic spectra is dramatically extended by the controlling pulse. Thus, it is possible to tune the width and intensity of harmonic spectrum to achieve broadband absorption of radiation. The methodology described here not only improves the understanding of the surface plasmon effect used in a DVDGr-metal optoelectronic device but also may be applicable to different optical technologies. 展开更多
关键词 plasmon double vacancy defected graphene mixed metallic nanoarrays multi-beam laser harmonic spectrum
在线阅读 下载PDF
Highly surface electron-deficient Co_(9)S_(8) nanoarrays for enhanced oxygen evolution 被引量:4
6
作者 Haoxuan Zhang Jingyu Wang +2 位作者 Qilin Cheng Petr Saha Hao Jiang 《Green Energy & Environment》 SCIE CSCD 2020年第4期492-498,共7页
Tailoring valence electron delocalization of transition metal center is of importance to achieve highly-active electrocatalysts for oxygen evolution reaction(OER).Herein,we demonstrate a“poor sulfur”route to synthes... Tailoring valence electron delocalization of transition metal center is of importance to achieve highly-active electrocatalysts for oxygen evolution reaction(OER).Herein,we demonstrate a“poor sulfur”route to synthesize surface electron-deficient Co_(9)S_(8) nanoarrays,where the binding energy(BE)of Co metal center is considerably higher than all reported Co_(9)S_(8)-based electrocatalysts.The resulting Co_(9)S_(8) electrocatalysts only require the overpotentials(h)of 265 and 326 mV at 10 and 100 mA cm^(-2) with a low Tafel slope of 56 mV dec^-(1) and a 60 hlasting stability in alkaline media.The OER kinetics are greatly expedited with a low reaction activation energy of 27.9 kJ mol^-(1) as well as abundant OOH*key intermediates(24%),thus exhibiting excellent catalytic performances.The surface electron-deficient engineering gives an available strategy to improve the catalytic activity of other advanced non-noble electrocatalysts. 展开更多
关键词 Electron deficiency Co_(9)S_(8) Nanoarray ELECTROCATALYST Oxygen evolution reaction
在线阅读 下载PDF
Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method 被引量:2
7
作者 张庆宇 孙东科 +1 位作者 张友法 朱鸣芳 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期349-354,共6页
In the present study,the process of droplet condensation on superhydrophobic nanoarrays is simulated using a multicomponent multi-phase lattice Boltzmann model.The results indicate that three typical nucleation modes ... In the present study,the process of droplet condensation on superhydrophobic nanoarrays is simulated using a multicomponent multi-phase lattice Boltzmann model.The results indicate that three typical nucleation modes of condensate droplets are produced by changing the geometrical parameters of nanoarrays.Droplets nucleated at the top(top-nucleation mode),or in the upside interpillar space of nanoarrays(side-nucleation mode),generate the non-wetting Cassie state,whereas the ones nucleated at the bottom corners between the nanoarrays(bottom-nucleation mode) present the wetting Wenzel state.Time evolutions of droplet pressures at the upside and downside of the liquid phase are analyzed to understand the wetting behaviors of the droplets condensed from different nucleation modes.The phenomena of droplet condensation on nanoarrays patterned with different hydrophilic and hydrophobic regions are simulated,indicating that the nucleation mode of condensate droplets can also be manipulated by modifying the local intrinsic wettability of nanoarray surface.The simulation results are compared well with the experimental observations reported in the literature. 展开更多
关键词 condensate droplet superhydrophobic nanoarray WETTABILITY lattice Boltzmann method
在线阅读 下载PDF
High Density 3D Carbon Tube Nanoarray Electrode Boosting the Capacitance of Filter Capacitor
8
作者 Gan Chen Fangming Han +6 位作者 Huachun Ma Pei Li Ziyan Zhou Pengxiang Wang Xiaoyan Li Guowen Meng Bingqing Wei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期242-254,共13页
Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with pre... Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization. 展开更多
关键词 Compactly arranged Three-dimensional carbon tube nanoarray Dimensional carbon tube nanoarray Fast frequency response Electric double-layer capacitors Layer capacitors AC line-filtering FILTERING
在线阅读 下载PDF
Hierarchical Ti_(3)C_(2)T_(x)@ ZnO Hollow Spheres with Excellent Microwave Absorption Inspired by the Visual Phenomenon of Eyeless Urchins 被引量:11
9
作者 Yan‑Qin Wang Hai‑Bo Zhao +3 位作者 Jin‑Bo Cheng Bo‑Wen Liu Qiang Fu Yu‑Zhong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第5期62-76,共15页
Ingenious microstructure design and rational composition selection are effective approaches to realize high-performance microwave absorbers,and the advancement of biomimetic manufacturing provides a new strategy.In na... Ingenious microstructure design and rational composition selection are effective approaches to realize high-performance microwave absorbers,and the advancement of biomimetic manufacturing provides a new strategy.In nature,urchins are the animals without eyes but can“see”,because their special structure composed of regular spines and spherical photosensitive bodies“amplifies”the light-receiving ability.Herein,inspired by the above phenomenon,the biomimetic urchin-like Ti_(3)C_(2)T_(x)@ZnO hollow microspheres are rationally designed and fabricated,in which ZnO nanoarrays(length:~2.3μm,diameter:~100 nm)as the urchin spines are evenly grafted onto the surface of the Ti_(3)C_(2)T_(x) hollow spheres(diameter:~4.2μm)as the urchin spherical photosensitive bodies.The construction of gradient impedance and hierarchical heterostructures enhance the attenuation of incident electromagnetic waves.And the EMW loss behavior is further revealed by limited integral simulation calculations,which fully highlights the advantages of the urchin-like architecture.As a result,the Ti_(3)C_(2)T_(x)@ZnO hollow spheres deliver a strong reflection loss of−57.4 dB and broad effective absorption bandwidth of 6.56 GHz,superior to similar absorbents.This work provides a new biomimetic strategy for the design and manufacturing of advanced microwave absorbers. 展开更多
关键词 Bioinspired Hierarchical heterostructures Ti_(3)C_(2)T_(x)MXene ZnO nanoarrays Microwave absorption
在线阅读 下载PDF
Flexible quasi-solid-state dual-ion asymmetric supercapacitor based on Ni(OH)2 and Nb2O5 nanosheet arrays 被引量:2
10
作者 Xiaolan Deng Yuqi Jiang +6 位作者 Zengxi Wei Minglei Mao Ramyakrishna Pothu Hongxia Wang Caiyun Wang Jinping Liu Jianmin Ma 《Green Energy & Environment》 SCIE CSCD 2019年第4期382-390,共9页
Increasing the energy density, power density as well as widening the operation voltage are essential to electrochemical capacitors to meet the practical energy demands. Herein, a novel flexible quasi-solid-state dual-... Increasing the energy density, power density as well as widening the operation voltage are essential to electrochemical capacitors to meet the practical energy demands. Herein, a novel flexible quasi-solid-state dual-ion asymmetric supercapacitor(ASC) with Ni(OH)2 and Nb2O5 nanosheets directly grown on stainless steel mesh is developed. In the dual-ion ASC, Nb2O5 negative and Ni(OH)2 positive electrodes react with Li+ and OH- respectively in alkaline gel electrolyte to store energy, which is quite different from conventional alkali metal ion SCs and alkaline SCs. The as-assembled flexible device has an extended working voltage of 1.7 V and delivers a capacity of 5.37 mAh cm-2, a maximum energy density and power density of 0.52 mWh cm-3 and 170 mW cm-3 , respectively. The device maintains around 60% capacity retention after long cycling up to 1000 cycles. Moreover, our device can light up a LED light efficiently upon fast charging. The proposed quasi-solid-state dual-ion ASC has potential applications in future portable electronics and flexible energy storage devices. 展开更多
关键词 Nickel hydroxide Niobium pentoxide nanoarrays FLEXIBLE supercapacitor DUAL ION capacitor
在线阅读 下载PDF
Modulating proton binding energy on the tungsten carbide nanowires surfaces for boosting hydrogen evolution in acid 被引量:1
11
作者 Qjngshui Hong Tangyi Li +6 位作者 Shisheng Zheng Haibiao Chen Wenju Ren Honghao Chu Kuangda Xu Zongwei Mei Feng Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期610-616,I0014,共8页
ungsten carbides have attracted wide attentions as Pt substitute electrocatalysts for hydrogen evolution reaction (HER), due to their good stability in an acid environment and Pt-like behaviour in hydrolysis. However,... ungsten carbides have attracted wide attentions as Pt substitute electrocatalysts for hydrogen evolution reaction (HER), due to their good stability in an acid environment and Pt-like behaviour in hydrolysis. However, quantum chemistry calculations predict that the strong tungsten-hydrogen bonding hinders hydrogen desorption and restricts the overall catalytic activity. Synergistic modulation of host and guest electronic interaction can change the local work function of a compound, and therefore, improve its electrocatalytic activity over either of the elements individually. Herein, we develop a creative and facile solid-state approach to synthesize self-supported carbon-encapsulated single-phase WC hybrid nanowires arrays (nanoarrays) as HER catalyst. The theoretical calculations reveal that carbon encapsulation modifies the Gibbs free energy of H* values for the WC adsorption sites, endowing a more favorable C@WC active site for HER. The experimental results exhibit that the hybrid WC nanoarrays possess remarkable Pt-like catalytic behavior, with superior activity and stability in an acidic media, which can be compared to the best non-noble metal catalysts reported to date for hydrogen evolution reaction. The present results and the facile synthesis method open up an exciting avenue for developing cost-effective catalysts with controllable morphology and functionality for scalable hydrogen generation and other carbide nanomaterials applicable to a range of electrocatalytic reactions. 展开更多
关键词 Carbon-encapsulated tungsten carbide Solid-state synthesis Self-supported nanoarrays electrode Hydrogen evolution reaction First-principles calculations
在线阅读 下载PDF
Hybrid architecture design enhances the areal capacity and cycling life of low-overpotential nanoarray oxygen electrode for lithium–oxygen batteries 被引量:1
12
作者 Liang Xiao Duo Wang +2 位作者 Ming Li Bohua Deng Jinping Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期248-255,I0008,共9页
Transition metal oxide(TMO)nanoarrays are promising architecture designs for self-supporting oxygen electrodes to achieve high catalytic activities in lithium-oxygen(Li-O2)batteries.However,the poor conductive nature ... Transition metal oxide(TMO)nanoarrays are promising architecture designs for self-supporting oxygen electrodes to achieve high catalytic activities in lithium-oxygen(Li-O2)batteries.However,the poor conductive nature of TMOs and the confined growth of nanostructures on the limited surfaces of electrode substrates result in the low areal capacities of TMO nanoarray electrodes,which seriously deteriorates the intrinsically high energy densities of Li-O2 batteries.Herein,we propose a hybrid nanoarray architecture design that integrates the high electronic conductivity of carbon nanoflakes(CNFs)and the high catalytic activity of Co3 O4 nanosheets on carbon cloth(CC).Due to the synergistic effect of two differently featured components,the hybrid nanoarrays(Co3 O4-CNF@CC)achieve a high reversible capacity of3.14 mA h cm-2 that cannot be achieved by only single components.Further,CNFs grown on CC induce the three-dimensionally distributed growth of ultrafine Co3 O4 nanosheets to enable the efficient utilization of catalysts.Thus,with the high catalytic efficiency,hybrid Co3 O4-CNF@CC also achieves a more prolonged cycling life than pristine TMO nanoarrays.The present work provides a new strategy for improving the performance of nanoarray oxygen electrodes via the hybrid architecture design that integrates the intrinsic properties of each component and induces the three-dimensional distribution of catalysts. 展开更多
关键词 Hybrid architecture Nanoarray oxygen electrode Synergistic effect Three-dimensional current collector Lithium-oxygen batteries
在线阅读 下载PDF
A novel bifunctional oxygen electrode architecture enabled by heterostructures self-scaffolding for lithium–oxygen batteries 被引量:1
13
作者 Liang Xiao Zhong Qin +2 位作者 Jingyu Yi Haoyang Dong Jinping Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期216-221,共6页
In recent years, as one of the most promising chemical power sources for future society, lithium–oxygen (Li–O2) battery receives great attention due to its extremely high theoretical energy density of 3505 Wh kg^(–... In recent years, as one of the most promising chemical power sources for future society, lithium–oxygen (Li–O2) battery receives great attention due to its extremely high theoretical energy density of 3505 Wh kg^(–1)[1–4]. In practice, large polarization and consequent low energy efficiency currently still hinder the application of Li–O2batteries, which mainly results from the sluggish electrochemical reaction kinetics of oxygen diffusion electrodes in aprotic electrolytes [5]. On one hand, oxygen reduction reaction (ORR)in aprotic electrolytes is intrinsically sluggish due to the difficult charge transfer, the low solubility of oxygen. 展开更多
关键词 HETEROSTRUCTURE Nanoarray architecture Bifunctional catalysis Oxygen diffusion electrode Lithium–oxygen batteries
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部