The structure and performance of space-time multiuser detection receiver at base stations of WCDMA system is analyzed, in which smart antenna is employed. WCDMA uplink signal model is established in this paper. Space-...The structure and performance of space-time multiuser detection receiver at base stations of WCDMA system is analyzed, in which smart antenna is employed. WCDMA uplink signal model is established in this paper. Space-time multiuser receiver presented in this paper combines 2D-RAKE with parallel interference cancellation (PIC), and the improved parallel interference cancellation methods are given. A novel space-time multiuser detection scheme, 2DRAKE-GPPIC is proposed. This scheme employs smart antenna to suppress unexpected DOA (Direction Of Arrival) signal, uses RAKE receiver to combine different delays of expected signal, and utilizes grouped partial parallel interference cancellation (GPPIC) algorithm to suppress further the interference signal in the main lobe of array antennas. The simulation results reveal that the scheme of space-time multiuser detection presented in this paper has better performance for WCDMA system.展开更多
Iterative multiuser receiver for joint multiuser detection and channel decoding improves the receiver' s performance by passing soft information between multiuser detection and channel decoding. In this paper, an ...Iterative multiuser receiver for joint multiuser detection and channel decoding improves the receiver' s performance by passing soft information between multiuser detection and channel decoding. In this paper, an iterative multiuser receiver based on decorrelating decision-feedback detection is proposed, which is effective to implement multiuser detection, channel decoding and parameter estimation. The data decoding and the parameter estimation are reinforced each other. The bit error rate decreases along with the increase of the iteration, and the parameter estimation approaches the optimum at the same time.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
[Objective]Crop line extraction is critical for improving the efficiency of autonomous agricultural machines in the field.However,traditional detection methods struggle to maintain high accuracy and efficiency under c...[Objective]Crop line extraction is critical for improving the efficiency of autonomous agricultural machines in the field.However,traditional detection methods struggle to maintain high accuracy and efficiency under challenging conditions,such as strong light exposure and weed interference.The aims are to develop an effective crop line extraction method by combining YOLOv8-G,Affinity Propagation,and the Least Squares method to enhance detection accuracy and performance in complex field environments.[Methods]The proposed method employs machine vision techniques to address common field challenges.YOLOv8-G,an improved object detection algorithm that combines YOLOv8 and Ghost‐NetV2 for lightweight,high-speed performance,was used to detect the central points of crops.These points were then clustered using the Affinity Propagation algorithm,followed by the application of the Least Squares method to extract the crop lines.Comparative tests were conducted to evaluate multiple backbone networks within the YOLOv8 framework,and ablation studies were performed to validate the enhancements made in YOLOv8-G.[Results and Discussions]The performance of the proposed method was compared with classical object detection and clustering algorithms.The YOLOv8-G algorithm achieved average precision(AP)values of 98.22%,98.15%,and 97.32%for corn detection at 7,14,and 21 days after emergence,respectively.Additionally,the crop line extraction accuracy across all stages was 96.52%.These results demonstrate the model's ability to maintain high detection accuracy despite challenging conditions in the field.[Conclusions]The proposed crop line extraction method effectively addresses field challenges such as lighting and weed interference,enabling rapid and accurate crop identification.This approach supports the automatic navigation of agricultural machinery,offering significant improvements in the precision and efficiency of field operations.展开更多
基于近红外光谱技术,结合不同预处理和特征波长筛选方法,构建小麦专用粉的破损淀粉含量、降落数值、吸水率、稳定时间、拉伸面积、延伸度和最大拉伸阻力的偏最小二乘(Partial Least Squares,PLS)预测模型和总体预测模型,并对模型的预测...基于近红外光谱技术,结合不同预处理和特征波长筛选方法,构建小麦专用粉的破损淀粉含量、降落数值、吸水率、稳定时间、拉伸面积、延伸度和最大拉伸阻力的偏最小二乘(Partial Least Squares,PLS)预测模型和总体预测模型,并对模型的预测能力进行评估。结果表明:去线性趋势(Detrend,DT)是破损淀粉含量和吸水率预测模型的最佳预处理方法,Savitzky-Gloay(SG)卷积平滑是降落数值和拉伸面积预测模型的最佳预处理方法,标准正态变量变换(Standard Normal Variable Transformation,SNV)是延伸度和最大拉伸阻力预测模型的最佳预处理方法。竞争性自适应重加权法(Competitive Adaptive Reweighted Sampling,CARS)可有效提高破损淀粉含量、降落数值、吸水率、拉伸面积和最大拉伸阻力预测模型的预测精度,预测决定系数分别为0.9641、0.7140、0.9755、0.9434和0.8283;连续投影算法(Successive Projections Algorithm,SPA)可有效提高稳定时间和延伸度预测模型的效果,预测决定系数分别为0.7135和0.9530。总体预测模型对稳定时间、拉伸面积和最大拉伸阻力的预测效果均有所提升,剩余预测偏差(Residual Predictive Deviation,RPD)分别从1.86、4.27和2.51提升到2.43、5.26和3.11。综上可知,近红外光谱技术对小麦专用粉品质特性的无损快速检测是有效的、可行的。展开更多
为解决电池模组极柱焊接缺陷检测精度低、效率低的问题,提出了一种基于机器视觉的焊接缺陷检测算法。首先,对采集图像进行预处理操作;其次,通过组件筛选结合改进的Canny算法获取目标区域的无干扰边缘轮廓,为了改善拟合干扰现象,利用基...为解决电池模组极柱焊接缺陷检测精度低、效率低的问题,提出了一种基于机器视觉的焊接缺陷检测算法。首先,对采集图像进行预处理操作;其次,通过组件筛选结合改进的Canny算法获取目标区域的无干扰边缘轮廓,为了改善拟合干扰现象,利用基于密度的聚类(density-based spatial clustering of applications with noise,DBSCAN)算法对焊接区域的内外圆边缘点集进行分离;然后,采用改进的最小二乘法对内外圆点集分别进行拟合得到精准的焊接区域;最后,以焊接区域内外圆的面积差和同心度来检测焊接面积缺陷和焊偏,通过双向扫面检测法进行焊接区域灰度值遍历,根据对应的灰度值范围和区域大小来检测焊穿和炸点缺陷。实验表明,该算法能够精确拟合焊接区域并准确识别出焊接缺陷,具有较高的检测精度和效率,能够满足工业生产需求。展开更多
针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系...针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。展开更多
Solar arrays are important and indispensable parts of spacecraft and provide energy support for spacecraft to operate in orbit and complete on-orbit missions.When a spacecraft is in orbit,because the solar array is ex...Solar arrays are important and indispensable parts of spacecraft and provide energy support for spacecraft to operate in orbit and complete on-orbit missions.When a spacecraft is in orbit,because the solar array is exposed to the harsh space environment,with increasing working time,the performance of its internal electronic components gradually degrade until abnormal damage occurs.This damage makes solar array power generation unable to fully meet the energy demand of a spacecraft.Therefore,timely and accurate detection of solar array anomalies is of great significance for the on-orbit operation and maintenance management of spacecraft.In this paper,we propose an anomaly detection method for spacecraft solar arrays based on the integrated least squares support vector machine(ILS-SVM)model:it selects correlated telemetry data from spacecraft solar arrays to form a training set and extracts n groups of training subsets from this set,then gets n corresponding least squares support vector machine(LS-SVM)submodels by training on these training subsets,respectively;after that,the ILS-SVM model is obtained by integrating these submodels through a weighting operation to increase the prediction accuracy and so on;finally,based on the obtained ILS-SVM model,a parameterfree and unsupervised anomaly determination method is proposed to detect the health status of solar arrays.We use the telemetry data set from a satellite in orbit to carry out experimental verification and find that the proposed method can diagnose solar array anomalies in time and can capture the signs before a solar array anomaly occurs,which reflects the applicability of the method.展开更多
文摘The structure and performance of space-time multiuser detection receiver at base stations of WCDMA system is analyzed, in which smart antenna is employed. WCDMA uplink signal model is established in this paper. Space-time multiuser receiver presented in this paper combines 2D-RAKE with parallel interference cancellation (PIC), and the improved parallel interference cancellation methods are given. A novel space-time multiuser detection scheme, 2DRAKE-GPPIC is proposed. This scheme employs smart antenna to suppress unexpected DOA (Direction Of Arrival) signal, uses RAKE receiver to combine different delays of expected signal, and utilizes grouped partial parallel interference cancellation (GPPIC) algorithm to suppress further the interference signal in the main lobe of array antennas. The simulation results reveal that the scheme of space-time multiuser detection presented in this paper has better performance for WCDMA system.
文摘Iterative multiuser receiver for joint multiuser detection and channel decoding improves the receiver' s performance by passing soft information between multiuser detection and channel decoding. In this paper, an iterative multiuser receiver based on decorrelating decision-feedback detection is proposed, which is effective to implement multiuser detection, channel decoding and parameter estimation. The data decoding and the parameter estimation are reinforced each other. The bit error rate decreases along with the increase of the iteration, and the parameter estimation approaches the optimum at the same time.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
文摘[Objective]Crop line extraction is critical for improving the efficiency of autonomous agricultural machines in the field.However,traditional detection methods struggle to maintain high accuracy and efficiency under challenging conditions,such as strong light exposure and weed interference.The aims are to develop an effective crop line extraction method by combining YOLOv8-G,Affinity Propagation,and the Least Squares method to enhance detection accuracy and performance in complex field environments.[Methods]The proposed method employs machine vision techniques to address common field challenges.YOLOv8-G,an improved object detection algorithm that combines YOLOv8 and Ghost‐NetV2 for lightweight,high-speed performance,was used to detect the central points of crops.These points were then clustered using the Affinity Propagation algorithm,followed by the application of the Least Squares method to extract the crop lines.Comparative tests were conducted to evaluate multiple backbone networks within the YOLOv8 framework,and ablation studies were performed to validate the enhancements made in YOLOv8-G.[Results and Discussions]The performance of the proposed method was compared with classical object detection and clustering algorithms.The YOLOv8-G algorithm achieved average precision(AP)values of 98.22%,98.15%,and 97.32%for corn detection at 7,14,and 21 days after emergence,respectively.Additionally,the crop line extraction accuracy across all stages was 96.52%.These results demonstrate the model's ability to maintain high detection accuracy despite challenging conditions in the field.[Conclusions]The proposed crop line extraction method effectively addresses field challenges such as lighting and weed interference,enabling rapid and accurate crop identification.This approach supports the automatic navigation of agricultural machinery,offering significant improvements in the precision and efficiency of field operations.
文摘为解决电池模组极柱焊接缺陷检测精度低、效率低的问题,提出了一种基于机器视觉的焊接缺陷检测算法。首先,对采集图像进行预处理操作;其次,通过组件筛选结合改进的Canny算法获取目标区域的无干扰边缘轮廓,为了改善拟合干扰现象,利用基于密度的聚类(density-based spatial clustering of applications with noise,DBSCAN)算法对焊接区域的内外圆边缘点集进行分离;然后,采用改进的最小二乘法对内外圆点集分别进行拟合得到精准的焊接区域;最后,以焊接区域内外圆的面积差和同心度来检测焊接面积缺陷和焊偏,通过双向扫面检测法进行焊接区域灰度值遍历,根据对应的灰度值范围和区域大小来检测焊穿和炸点缺陷。实验表明,该算法能够精确拟合焊接区域并准确识别出焊接缺陷,具有较高的检测精度和效率,能够满足工业生产需求。
文摘针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。
基金supported by the National Natural Science Foundation of China(7190121061973310).
文摘Solar arrays are important and indispensable parts of spacecraft and provide energy support for spacecraft to operate in orbit and complete on-orbit missions.When a spacecraft is in orbit,because the solar array is exposed to the harsh space environment,with increasing working time,the performance of its internal electronic components gradually degrade until abnormal damage occurs.This damage makes solar array power generation unable to fully meet the energy demand of a spacecraft.Therefore,timely and accurate detection of solar array anomalies is of great significance for the on-orbit operation and maintenance management of spacecraft.In this paper,we propose an anomaly detection method for spacecraft solar arrays based on the integrated least squares support vector machine(ILS-SVM)model:it selects correlated telemetry data from spacecraft solar arrays to form a training set and extracts n groups of training subsets from this set,then gets n corresponding least squares support vector machine(LS-SVM)submodels by training on these training subsets,respectively;after that,the ILS-SVM model is obtained by integrating these submodels through a weighting operation to increase the prediction accuracy and so on;finally,based on the obtained ILS-SVM model,a parameterfree and unsupervised anomaly determination method is proposed to detect the health status of solar arrays.We use the telemetry data set from a satellite in orbit to carry out experimental verification and find that the proposed method can diagnose solar array anomalies in time and can capture the signs before a solar array anomaly occurs,which reflects the applicability of the method.