The problem of fault detection for linear discrete timevarying systems with multiplicative noise is dealt with.By using an observer-based robust fault detection filter(FDF) as a residual generator,the design of the ...The problem of fault detection for linear discrete timevarying systems with multiplicative noise is dealt with.By using an observer-based robust fault detection filter(FDF) as a residual generator,the design of the FDF is formulated in the framework of H ∞ filtering for a class of stochastic time-varying systems.A sufficient condition for the existence of the FDF is derived in terms of a Riccati equation.The determination of the parameter matrices of the filter is converted into a quadratic optimization problem,and an analytical solution of the parameter matrices is obtained by solving the Riccati equation.Numerical examples are given to illustrate the effectiveness of the proposed method.展开更多
In this paper,based on the work in[5],some theoretical analysis on a variational model for multiplicative noise removal is further studied.Moreover,the primal-dual technique is incorporated to design a fast algorithm ...In this paper,based on the work in[5],some theoretical analysis on a variational model for multiplicative noise removal is further studied.Moreover,the primal-dual technique is incorporated to design a fast algorithm for the variational model.Some numerical results are presented to illustrate the efficiency of the展开更多
In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applicati...In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.展开更多
基金supported by the National Natural Science Foundation of China (61174121,61121003)the National High Technology Researchand Development Program of China (863 Program) (2008AA121302)+1 种基金the National Basic Research Program of China (973 Program)(2009CB724000)the Research Fund for the Doctoral Program of Higher Education of China
文摘The problem of fault detection for linear discrete timevarying systems with multiplicative noise is dealt with.By using an observer-based robust fault detection filter(FDF) as a residual generator,the design of the FDF is formulated in the framework of H ∞ filtering for a class of stochastic time-varying systems.A sufficient condition for the existence of the FDF is derived in terms of a Riccati equation.The determination of the parameter matrices of the filter is converted into a quadratic optimization problem,and an analytical solution of the parameter matrices is obtained by solving the Riccati equation.Numerical examples are given to illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(11101218)Natural Science Fouadation for Colleges and Universities in Jangsu Province(11KJB110009)the Scientific Research Foundation of NUPT(NY209025)
文摘In this paper,based on the work in[5],some theoretical analysis on a variational model for multiplicative noise removal is further studied.Moreover,the primal-dual technique is incorporated to design a fast algorithm for the variational model.Some numerical results are presented to illustrate the efficiency of the
基金supported by the National Natural Science Foundation of China(61501142)the China Postdoctoral Science Foundation(2015M571414)+3 种基金the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2016102)Shandong Provincial Natural Science Foundation(ZR2014FQ003)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF 2013130HIT(WH)XBQD 201022)
文摘In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.