为解决在双可重构智能超表面(Reconfigurable Intelligent Surface,RIS)系统中获取高维信道状态信息(Channel State Information,CSI)的挑战,提出了一种基于混合张量分解的多链路联合信道估计算法。首先,通过设计导频传输机制,将单反射...为解决在双可重构智能超表面(Reconfigurable Intelligent Surface,RIS)系统中获取高维信道状态信息(Channel State Information,CSI)的挑战,提出了一种基于混合张量分解的多链路联合信道估计算法。首先,通过设计导频传输机制,将单反射链路和双反射链路的接收信号分别建模为平行因子模型和平行因子塔克(Tucker)张量模型,将信道估计问题转化为混合张量因子矩阵的拟合问题。然后,考虑到多条链路之间共享的CSI,采用一种基于交替最小二乘迭代算法来分解混合张量,以有效估计出因子矩阵。最后,通过对该混合张量进行唯一性分析,与传统的Khatri-Rao分解方法相比,所提方法具备更为灵活的参数设计特点。仿真实验结果表明,该方法能够在训练块数小于RIS单元数的情况下有效估计反射链路CSI。展开更多
针对多输入多输出正交时频空间(multiple-input multiple-output orthogonal time frequency space,MIMO-OTFS)系统由最大时延、多普勒扩展、天线数量增加带来信道估计计算开销大、准确率下降的问题,提出了一种基于感知辅助和原子选择...针对多输入多输出正交时频空间(multiple-input multiple-output orthogonal time frequency space,MIMO-OTFS)系统由最大时延、多普勒扩展、天线数量增加带来信道估计计算开销大、准确率下降的问题,提出了一种基于感知辅助和原子选择门限的广义正交匹配追踪(sensing aided generalized orthogonal matching pursuit algorithm based on atomic threshold,SA-TGOMP)信道估计算法。该算法首先将雷达探测的用户和周围环境信息转化为OTFS信道的初始索引集,然后引入以固定值选取相关性原子进行迭代的策略和原子选择门限进行支撑集更新。实验结果表明,本文算法能够有效提高信道估计精度的同时减少导频开销。展开更多
文摘双基地多输入多输出(Multiple-Input Multiple-Output, MIMO)雷达阵元故障会导致三阶观测张量中出现缺失切片数据,严重影响目标角度估计性能。为此,提出一种基于原子范数的阵元故障MIMO雷达差分共阵角度估计方法。首先,对MIMO雷达三阶观测张量进行PARAFAC分解得到收发阵列的不完整因子矩阵;然后,利用收发阵列的因子矩阵分别获得发射和接收差分共阵的导向矩阵,并利用差分共阵的冗余度对故障阵元缺失数据进行填充,从而得到等效虚拟收发阵列的虚拟因子矩阵;最后,为了填补等效虚拟阵列中的空洞,分别对等效虚拟收发阵列的虚拟因子矩阵建立原子范数约束下的低秩矩阵重构模型,并将其表述为半正定规划(Semi-definite Programming, SDP)问题,利用交替方向乘子法(Alternating Direction Method of Multipliers, ADMM)求解该矩阵重构模型。仿真结果表明,所提方法可以有效重构出不完整因子矩阵中的缺失数据,从而改善MIMO雷达阵元故障下的角度估计性能。
文摘为解决在双可重构智能超表面(Reconfigurable Intelligent Surface,RIS)系统中获取高维信道状态信息(Channel State Information,CSI)的挑战,提出了一种基于混合张量分解的多链路联合信道估计算法。首先,通过设计导频传输机制,将单反射链路和双反射链路的接收信号分别建模为平行因子模型和平行因子塔克(Tucker)张量模型,将信道估计问题转化为混合张量因子矩阵的拟合问题。然后,考虑到多条链路之间共享的CSI,采用一种基于交替最小二乘迭代算法来分解混合张量,以有效估计出因子矩阵。最后,通过对该混合张量进行唯一性分析,与传统的Khatri-Rao分解方法相比,所提方法具备更为灵活的参数设计特点。仿真实验结果表明,该方法能够在训练块数小于RIS单元数的情况下有效估计反射链路CSI。
文摘针对多输入多输出正交时频空间(multiple-input multiple-output orthogonal time frequency space,MIMO-OTFS)系统由最大时延、多普勒扩展、天线数量增加带来信道估计计算开销大、准确率下降的问题,提出了一种基于感知辅助和原子选择门限的广义正交匹配追踪(sensing aided generalized orthogonal matching pursuit algorithm based on atomic threshold,SA-TGOMP)信道估计算法。该算法首先将雷达探测的用户和周围环境信息转化为OTFS信道的初始索引集,然后引入以固定值选取相关性原子进行迭代的策略和原子选择门限进行支撑集更新。实验结果表明,本文算法能够有效提高信道估计精度的同时减少导频开销。
文摘超大规模多输入多输出(Extremely Large-scale Multiple-Input Multiple-Output,XL-MIMO)系统的信道通常以瑞利距离为边界分为近场信道和远场信道,混合场信道模型用路径数比例因子将球面波前的近场信道模型和平面波前的远场信道模型叠加,致使信道参数维数剧增,信道估计的导频开销极大,且由于离格能量泄露难以获取精确信道参数向量的稀疏度。针对这类通信系统的信道估计问题,为降低导频开销并提高计算效率,分析远场的角度域稀疏信道表示模型和近场的极化域稀疏信道表示模型,在稀疏信号恢复框架下将估计问题转化为L1范数优化问题,提出基于交替方向乘子法(Alternating Direction Method of Multiplier,ADMM)的混合场稀疏信道估计算法,并提出一种改进的ADMM算法,将拉格朗日乘子更新用两步对称的方式迭代计算,使得算法的收敛速度更快,计算效率更高。这两种算法可摆脱常规正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法对信道稀疏度的依赖,相比于OMP算法在估计精度方面有较大提升。