The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description ab...To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.展开更多
The decomposition based approach decomposes a multi-objective problem into a series of single objective subproblems, which are optimized along contours towards the ideal point. But non-dominated solutions cannot sprea...The decomposition based approach decomposes a multi-objective problem into a series of single objective subproblems, which are optimized along contours towards the ideal point. But non-dominated solutions cannot spread uniformly, since the Pareto front shows different features, such as concave and convex. To improve the distribution uniformity of non-dominated solutions, a bidirectional decomposition based approach that constructs two search directions is proposed to provide a uniform distribution no matter what features problems have. Since two populations along two search directions show differently on diversity and convergence, an adaptive neighborhood selection approach is presented to choose suitable parents for the offspring generation. In order to avoid the problem of the shrinking search region caused by the close distance of the ideal and nadir points, a reference point update approach is presented. The performance of the proposed algorithm is validated with four state-of-the-art algorithms. Experimental results demonstrate the superiority of the proposed algorithm on all considered test problems.展开更多
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le...This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.展开更多
A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the...A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the C.G. offset, the cross moments of inertia and the space debris impact risk), we develop a threedimensional layout optimization model. Unlike most of the previous works just focusing on mass characteristics of the system, a space debris impact risk index is developed. Secondly, we develop an efficient optimization framework for the integration of computer-aided design (CAD) software as well as the optimization algorithm to obtain the Pareto front of the layout optimization problem. Thirdly, after obtaining the candidate solutions, we present a multi-attribute decision making approach, which integrates the smart Pareto filter and the correlation coefficient and standard deviation (CCSD) method to select the best tradeoff solutions on the optimal Pareto fronts. Finally, the framework and the decision making approach are applied to a case study of a satellite platform.展开更多
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ...In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms.展开更多
In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide...In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide. This paper proposes a general working pattern for a GEO optical satellite, as well as a target observation mission planning model. After analyzing the requirements of users and satellite control agencies, two objectives are simultaneously considered: maximization of total profit and minimization of satellite attitude maneuver angle. An NSGA-II based multi-objective optimization algorithm is proposed, which contains some heuristic principles in the initialization phase and mutation operator, and is embedded with a traveling salesman problem (TSP) optimization. The validity and performance of the proposed method are verified by extensive numerical simulations that include several types of point target distributions.展开更多
A finite element model of vehicle and its airbag landing attenuation system is established and verified experimentally.Two design cases are selected to constrain the airbag design for extreme landing conditions,while ...A finite element model of vehicle and its airbag landing attenuation system is established and verified experimentally.Two design cases are selected to constrain the airbag design for extreme landing conditions,while the height and width of airbag and the area of vent hole are chosen as design variables.The optimization is forced to compromise the design variables between the conflicting requirements of the two extremes.In order to optimize the parameters of airbag,the multi-dimensional response surfaces based on extended Latin hypercube design and radial basis function are employed instead of the complex finite element model.Pareto optimal solution sets based on response surfaces are then obtained by multi-objective genetic algorithm.The results show the optimization method presented in this paper is a practical tool for the optimization of airbag landing attenuation system for heavy airdrop.展开更多
As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimizat...As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimization problems is proposed, which regards the charge of all particles as the constraints in the current population and the measure of the uniformity of non-dominated solutions as the objective function. The charge of the particle is evaluated based on the dominated concept, and its magnitude determines the direction of a force between two particles. Numerical studies are carried out on six complex test functions and the experimental results demonstrate that the proposed NMEM algorithm is a very robust method for solving the multiobjective optimization problems.展开更多
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob...A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front.展开更多
In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory opti...In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory optimization (MORTO) approach via generalized varying domain (GVD) is proposed. Using the direct collocation approach, the trajectory optimization problem involving multiple objectives is discretized into a nonlinear multi-objective programming with priorities. In terms of fuzzy sets, the objectives are fuzzified into three types of fuzzy goals, and their constant tolerances are substituted by the varying domains. According to the principle that the objective with higher priority has higher satisfactory degree, the priority requirement is modeled as the order constraints of the varying domains. The corresponding two-side, single-side, and hybrid-side varying domain models are formulated for three fuzzy relations respectively. By regulating the parameter, the optimal reentry trajectory satisfying priorities can be achieved. Moreover, the performance about the parameter is analyzed, and the algorithm to find its specific value for maximum priority difference is proposed. The simulations demonstrate the effectiveness of the proposed method for hypersonic vehicles, and the comparisons with the traditional methods and sensitivity analysis are presented.展开更多
Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issu...Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issue,a series of indicatorbased multi-objective evolutionary algorithms(MOEAs)have been proposed to guide the evolution progress and shown promising performance.This paper proposes an indicator-based manyobjective evolutionary algorithm calledε-indicator-based shuffled frog leaping algorithm(ε-MaOSFLA),which adopts the shuffled frog leaping algorithm as an evolutionary strategy and a simple and effectiveε-indicator as a fitness assignment scheme to press the population towards the Pareto front.Compared with four stateof-the-art MOEAs on several standard test problems with up to 50 objectives,the experimental results show thatε-MaOSFLA outperforms the competitors.展开更多
This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regio...This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regions, allowing more processing is reserved only for these regions. The speed of object segmentation is significantly improved by the region proposal method.By the combination of the region proposal method based on the convolutional neural network and superpixel method, the category and location information can be used to segment objects and image redundancy is significantly reduced. The processing time is reduced considerably by this to achieve the real time. Experiments show that the proposed method can segment the interested target object in real time on an ordinary laptop.展开更多
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for...This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems.展开更多
This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element ...This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element weightily and changes solving multi-objective fuzzy optimization into solving dependent function K(x) of the single-objective optimization according to the optimization criterion. The paper particularly describes the realization approach of GA process of multi -objective fuzzy matter-element optimization: encode, produce initial populati on, confirm fitness function, select operator, etc. In the process, the adaptive macro genetic algorithms (AMGA) is applied to enhancing the evolution speed. Th e paper improves the two genetic operators: crossover and mutation operator. The modified adaptive macro genetic algorithms (MAMGA) is put forward simultane ously. It is adopted to solve the optimization problem. Three optimization methods, namely fuzzy matter-element optimization method, li nearity weighted method and fuzzy optimization method, are compared by using the table and figure, it shows that not only MAMGA is a little better than the AMGA , but also it reaches the extent to which the effective iteration generation is 62.2% of simple genetic algorithms (SGA). By the calculation of optimum exam ple, the improved method of genetic in the paper is much better than the method in reference of paper.展开更多
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca...With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method.展开更多
In order to obtain the remote center motion(RCM) mechanism with better performance indexes and avoid the collision of multi-manipulators in minimally invasive surgery(MIS), a novel multi-objective optimization model w...In order to obtain the remote center motion(RCM) mechanism with better performance indexes and avoid the collision of multi-manipulators in minimally invasive surgery(MIS), a novel multi-objective optimization model was presented. There were two optimization objectives: a global kinematic performance index and a comprehensive stiffness index. Other indexes to characterize the design requirements such as collision probability, workspace, mechanism parameter, mass, and wall thickness were considered as constraints. Angles between two adjacent joints and cross-section dimensions of links were chosen as the design variables. The non-dominated sorting genetic algorithm II(NSGA-II) was adopted to solve the complex multi-objective optimization problem. Then, a 3-degree of freedom(DoF) MIS robotic prototype based on optimization results has been built up. The experiments to test the spatial position change of the remote center point and to test the absolute position accuracy and repetitive position accuracy of the MIS robot were achieved, and the experimental results meet the requirements of MIS.展开更多
Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees ...Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively.展开更多
Based on reliability theory,a general method for the optimization design of piles subjected to horizontal loads is presented.This method takes into consideration various uncertainties caused by pile installation,varia...Based on reliability theory,a general method for the optimization design of piles subjected to horizontal loads is presented.This method takes into consideration various uncertainties caused by pile installation,variability of geotechnical materials from one location to another,and so on.It also deals with behavior and side constraints specified by standard specifications for piles.To more accurately solve the optimization design model,the first order reliability method is employed.The results from the numerical example indicate that the target reliability index has significant influence on design parameters.In addition,the optimization weight increases with the target reliability index.Especially when the target reliability index is relatively large,the target reliability index has significant influence on design weight of piles.展开更多
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
文摘To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.
文摘The decomposition based approach decomposes a multi-objective problem into a series of single objective subproblems, which are optimized along contours towards the ideal point. But non-dominated solutions cannot spread uniformly, since the Pareto front shows different features, such as concave and convex. To improve the distribution uniformity of non-dominated solutions, a bidirectional decomposition based approach that constructs two search directions is proposed to provide a uniform distribution no matter what features problems have. Since two populations along two search directions show differently on diversity and convergence, an adaptive neighborhood selection approach is presented to choose suitable parents for the offspring generation. In order to avoid the problem of the shrinking search region caused by the close distance of the ideal and nadir points, a reference point update approach is presented. The performance of the proposed algorithm is validated with four state-of-the-art algorithms. Experimental results demonstrate the superiority of the proposed algorithm on all considered test problems.
基金supported by the National Natural Science Foundation of China(6167321461673217+2 种基金61673219)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB120011)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX19_0299)
文摘This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.
基金supported by the National Natural Science Foundation of China(51405499)
文摘A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the C.G. offset, the cross moments of inertia and the space debris impact risk), we develop a threedimensional layout optimization model. Unlike most of the previous works just focusing on mass characteristics of the system, a space debris impact risk index is developed. Secondly, we develop an efficient optimization framework for the integration of computer-aided design (CAD) software as well as the optimization algorithm to obtain the Pareto front of the layout optimization problem. Thirdly, after obtaining the candidate solutions, we present a multi-attribute decision making approach, which integrates the smart Pareto filter and the correlation coefficient and standard deviation (CCSD) method to select the best tradeoff solutions on the optimal Pareto fronts. Finally, the framework and the decision making approach are applied to a case study of a satellite platform.
基金Project(61473078)supported by the National Natural Science Foundation of ChinaProject(2015-2019)supported by the Program for Changjiang Scholars from the Ministry of Education,China+1 种基金Project(16510711100)supported by International Collaborative Project of the Shanghai Committee of Science and Technology,ChinaProject(KJ2017A418)supported by Anhui University Science Research,China
文摘In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms.
基金supported by the National Natural Science Foundation of China(7150118061473301)
文摘In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide. This paper proposes a general working pattern for a GEO optical satellite, as well as a target observation mission planning model. After analyzing the requirements of users and satellite control agencies, two objectives are simultaneously considered: maximization of total profit and minimization of satellite attitude maneuver angle. An NSGA-II based multi-objective optimization algorithm is proposed, which contains some heuristic principles in the initialization phase and mutation operator, and is embedded with a traveling salesman problem (TSP) optimization. The validity and performance of the proposed method are verified by extensive numerical simulations that include several types of point target distributions.
文摘A finite element model of vehicle and its airbag landing attenuation system is established and verified experimentally.Two design cases are selected to constrain the airbag design for extreme landing conditions,while the height and width of airbag and the area of vent hole are chosen as design variables.The optimization is forced to compromise the design variables between the conflicting requirements of the two extremes.In order to optimize the parameters of airbag,the multi-dimensional response surfaces based on extended Latin hypercube design and radial basis function are employed instead of the complex finite element model.Pareto optimal solution sets based on response surfaces are then obtained by multi-objective genetic algorithm.The results show the optimization method presented in this paper is a practical tool for the optimization of airbag landing attenuation system for heavy airdrop.
基金supported by the National Natural Science Foundation of China(60873099)the Fundamental Research Funds for the Central Universities(2011QNA29)
文摘As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimization problems is proposed, which regards the charge of all particles as the constraints in the current population and the measure of the uniformity of non-dominated solutions as the objective function. The charge of the particle is evaluated based on the dominated concept, and its magnitude determines the direction of a force between two particles. Numerical studies are carried out on six complex test functions and the experimental results demonstrate that the proposed NMEM algorithm is a very robust method for solving the multiobjective optimization problems.
基金the National Natural Science Foundations of China (60873099 )
文摘A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front.
基金supported by the Natural Science Foundation of Tianjin(12JCZDJC30300)the Research Foundation of Tianjin Key Laboratory of Process Measurement and Control(TKLPMC-201613)the State Scholarship Fund of China
文摘In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory optimization (MORTO) approach via generalized varying domain (GVD) is proposed. Using the direct collocation approach, the trajectory optimization problem involving multiple objectives is discretized into a nonlinear multi-objective programming with priorities. In terms of fuzzy sets, the objectives are fuzzified into three types of fuzzy goals, and their constant tolerances are substituted by the varying domains. According to the principle that the objective with higher priority has higher satisfactory degree, the priority requirement is modeled as the order constraints of the varying domains. The corresponding two-side, single-side, and hybrid-side varying domain models are formulated for three fuzzy relations respectively. By regulating the parameter, the optimal reentry trajectory satisfying priorities can be achieved. Moreover, the performance about the parameter is analyzed, and the algorithm to find its specific value for maximum priority difference is proposed. The simulations demonstrate the effectiveness of the proposed method for hypersonic vehicles, and the comparisons with the traditional methods and sensitivity analysis are presented.
基金supported by the Shenzhen Innovation Technology Program(JCYJ20160422112909302)
文摘Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issue,a series of indicatorbased multi-objective evolutionary algorithms(MOEAs)have been proposed to guide the evolution progress and shown promising performance.This paper proposes an indicator-based manyobjective evolutionary algorithm calledε-indicator-based shuffled frog leaping algorithm(ε-MaOSFLA),which adopts the shuffled frog leaping algorithm as an evolutionary strategy and a simple and effectiveε-indicator as a fitness assignment scheme to press the population towards the Pareto front.Compared with four stateof-the-art MOEAs on several standard test problems with up to 50 objectives,the experimental results show thatε-MaOSFLA outperforms the competitors.
基金supported by the National Natural Science Foundation of China(61233010 61305106)+2 种基金the Shanghai Natural Science Foundation(17ZR1409700 18ZR1415300)the basic research project of Shanghai Municipal Science and Technology Commission(16JC1400900)
文摘This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regions, allowing more processing is reserved only for these regions. The speed of object segmentation is significantly improved by the region proposal method.By the combination of the region proposal method based on the convolutional neural network and superpixel method, the category and location information can be used to segment objects and image redundancy is significantly reduced. The processing time is reduced considerably by this to achieve the real time. Experiments show that the proposed method can segment the interested target object in real time on an ordinary laptop.
文摘This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems.
文摘This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element weightily and changes solving multi-objective fuzzy optimization into solving dependent function K(x) of the single-objective optimization according to the optimization criterion. The paper particularly describes the realization approach of GA process of multi -objective fuzzy matter-element optimization: encode, produce initial populati on, confirm fitness function, select operator, etc. In the process, the adaptive macro genetic algorithms (AMGA) is applied to enhancing the evolution speed. Th e paper improves the two genetic operators: crossover and mutation operator. The modified adaptive macro genetic algorithms (MAMGA) is put forward simultane ously. It is adopted to solve the optimization problem. Three optimization methods, namely fuzzy matter-element optimization method, li nearity weighted method and fuzzy optimization method, are compared by using the table and figure, it shows that not only MAMGA is a little better than the AMGA , but also it reaches the extent to which the effective iteration generation is 62.2% of simple genetic algorithms (SGA). By the calculation of optimum exam ple, the improved method of genetic in the paper is much better than the method in reference of paper.
基金supported by the National Natural Science Foundation of China(61172070,61111130122)the Innovative Research Team of Shaanxi Province(2013KCT-04)the Specialized Research Fund for the Doctoral Program of Higher Education(20126118110008)
文摘With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method.
基金Project(SS2012AA041601)supported by the National High Technology Research and Development Program of ChinaProject(81201150)supported by the National Natural Science Foundation of China
文摘In order to obtain the remote center motion(RCM) mechanism with better performance indexes and avoid the collision of multi-manipulators in minimally invasive surgery(MIS), a novel multi-objective optimization model was presented. There were two optimization objectives: a global kinematic performance index and a comprehensive stiffness index. Other indexes to characterize the design requirements such as collision probability, workspace, mechanism parameter, mass, and wall thickness were considered as constraints. Angles between two adjacent joints and cross-section dimensions of links were chosen as the design variables. The non-dominated sorting genetic algorithm II(NSGA-II) was adopted to solve the complex multi-objective optimization problem. Then, a 3-degree of freedom(DoF) MIS robotic prototype based on optimization results has been built up. The experiments to test the spatial position change of the remote center point and to test the absolute position accuracy and repetitive position accuracy of the MIS robot were achieved, and the experimental results meet the requirements of MIS.
基金supported by the National Natural Science Foundation of China(71690233)
文摘Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively.
基金Project(51278216) supported by the National Natural Science Foundation of China
文摘Based on reliability theory,a general method for the optimization design of piles subjected to horizontal loads is presented.This method takes into consideration various uncertainties caused by pile installation,variability of geotechnical materials from one location to another,and so on.It also deals with behavior and side constraints specified by standard specifications for piles.To more accurately solve the optimization design model,the first order reliability method is employed.The results from the numerical example indicate that the target reliability index has significant influence on design parameters.In addition,the optimization weight increases with the target reliability index.Especially when the target reliability index is relatively large,the target reliability index has significant influence on design weight of piles.