期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
结合X12乘法模型和ARIMA模型的月售电量预测方法 被引量:46
1
作者 颜伟 程超 +3 位作者 薛斌 李丹 陈飞 王顺昌 《电力系统及其自动化学报》 CSCD 北大核心 2016年第5期74-80,共7页
月售电量是具有趋势性、季节性和随机性的非平稳负荷,直接预测难度较大。为解决该问题,结合X12乘法模型与差分自回归移动平均(ARIMA)模型提出一种新的月售电量预测方法。首先,用X12乘法模型将历史月售电量分解为趋势分量、季节周期分量... 月售电量是具有趋势性、季节性和随机性的非平稳负荷,直接预测难度较大。为解决该问题,结合X12乘法模型与差分自回归移动平均(ARIMA)模型提出一种新的月售电量预测方法。首先,用X12乘法模型将历史月售电量分解为趋势分量、季节周期分量和随机分量,其中趋势分量用ARIMA模型预测,季节周期分量和随机分量分别用加权法和平均法预测;然后,用乘法模型将上述3个分量的预测值还原为最终的月售电量预测值。该方法可避免直接预测月售电量时不同分量间的相互干扰,提高预测精度;最后用重庆市铜梁区实际数据进行仿真分析。仿真结果表明,相对于ARIMA和季节ARIMA模型对月售电量序列直接建模预测的方法,所提方法具有更高的预测精度。 展开更多
关键词 X12乘法模型 差分自回归移动平均模型 月售电量预测 分解 还原
在线阅读 下载PDF
MLR和ARIMA模型在民航安全业绩预测中的应用 被引量:14
2
作者 程明 梁文娟 《中国安全科学学报》 CAS CSCD 北大核心 2016年第2期25-30,共6页
为预测民航安全业绩发展趋势,通过散点图、相关系数、主因子分析等多种统计方法,筛选5大类、共计20项与民航安全运行关系密切的社会经济指标,建立民航综合安全指数MLR模型;依据中国民航在1995—2014年间的安全生产历史数据,分析其发展... 为预测民航安全业绩发展趋势,通过散点图、相关系数、主因子分析等多种统计方法,筛选5大类、共计20项与民航安全运行关系密切的社会经济指标,建立民航综合安全指数MLR模型;依据中国民航在1995—2014年间的安全生产历史数据,分析其发展历史、现状、特征与存在的问题,并利用ARIMA模型进行预测分析。结果表明,人员素质因子和技术能力因子对民航安全均有显著影响;民航安全综合指数预测值在2015—2017年间总体稳定;MLR方法和ARIMA模型对民航安全趋势的耦合分析结果良好。 展开更多
关键词 安全综合指数 民航 经济社会指标 多元线性回归(MLR) 自回归移动平均(arima)模型 因子分析
在线阅读 下载PDF
基于ARIMA模型的重庆市流行性感冒预测研究 被引量:9
3
作者 邹小江 赵寒 +1 位作者 王祈茵 叶孟良 《重庆医科大学学报》 CAS CSCD 北大核心 2023年第12期1425-1429,共5页
目的:分析流感的流行趋势,构建流行性感冒发病的自回归滑动平均混合模型(autoregressive integrated moving aver-age,ARIMA)并对验证集进行预测,为重庆市流感的防治提供科学依据。方法:本研究采用R软件对重庆市2010年1月至2021年6月的... 目的:分析流感的流行趋势,构建流行性感冒发病的自回归滑动平均混合模型(autoregressive integrated moving aver-age,ARIMA)并对验证集进行预测,为重庆市流感的防治提供科学依据。方法:本研究采用R软件对重庆市2010年1月至2021年6月的流感数据进行ARIMA模型拟合,用2021年7月至2021年12月的数据评价模型拟合效果。结果:该流感疾病的流行呈现出明显的季节周期性,周期为1年,发病高峰期为冬季和春季,整体患病率呈上升后有下降趋势,拟合最佳模型为ARIMA(0,1,2)×(0,1,2)12,且该模型在预测2021年7月至12月罹患率的均方根误差为10.70,平均绝对百分比误差为70.04%,预测效果较好。结论:ARIMA模型在预测重庆市流感发病和流行趋势上有一定的效果,并能对未来的罹患率进行估计,可以为今后的流感疾病防控工作提供参考。 展开更多
关键词 流行性感冒 季节乘积自回归移动平均模型 预测
在线阅读 下载PDF
季节性变动影响下的上海港集装箱吞吐量预测 被引量:11
4
作者 杜刚 刘娅楠 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期234-239,共6页
港口吞吐量精准预测对于每一个港口的成功经营和有效决策都十分重要.季节性波动经常会影响港口吞吐量,为了更为准确地预测上海港口集装箱吞吐量,本文选取2007年至2012年上海港母港集装箱吞吐量的月度数据,并对于港口集装箱吞吐量的月度... 港口吞吐量精准预测对于每一个港口的成功经营和有效决策都十分重要.季节性波动经常会影响港口吞吐量,为了更为准确地预测上海港口集装箱吞吐量,本文选取2007年至2012年上海港母港集装箱吞吐量的月度数据,并对于港口集装箱吞吐量的月度数据中出现的季节性波动进行了处理,采用季节时间序列模型对其进行预测.为了说明方法的有效性,以同样的数据,使用整自回归移动平均模型对上海港集装箱吞吐量进行预测.两种方法预测结果进行对比发现,利用季节时间序列模型对港口集装箱吞吐量季节性进行处理,能够提高港口集装箱吞吐量的预测精度. 展开更多
关键词 单整自回归移动平均模型 季节时间序列模型 港口集装箱吞吐量 预测
在线阅读 下载PDF
乘积季节自回归积分滑动平均模型在长沙市手足口病发病率预测中的应用 被引量:11
5
作者 谈婷 陈立章 刘富强 《中南大学学报(医学版)》 CAS CSCD 北大核心 2014年第11期1170-1176,共7页
目的:建立长沙市手足口病发病率的乘积季节自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA),探讨乘积季节ARIMA模型在手足口病疫情预测的可行性。方法:运用EVIEWS 6.0软件对长沙市2008年5月至2013年8月... 目的:建立长沙市手足口病发病率的乘积季节自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA),探讨乘积季节ARIMA模型在手足口病疫情预测的可行性。方法:运用EVIEWS 6.0软件对长沙市2008年5月至2013年8月的手足口病发病率资料建立乘积季节ARIMA模型,以2013年9月至2014年2月的发病资料作为模型预测效果的检验样本,最后再用所得到的模型对2014年3月至2014年8月的月发病率进行预测。结果:经过序列平稳化、模型识别以及模型诊断后,建立乘积季节ARIMA模型(1,0,1)×(0,1,1)12,模型拟合度R2=0.81,预测均方根误差为8.29,平均绝对误差为5.83。结论:乘积季节ARIMA模型是一种较好的预测模型,所建模型拟合度较好,能为手足口病的防治工作提供参考。 展开更多
关键词 手足口病 时间序列 乘积季节自回归积分滑动平均模型
在线阅读 下载PDF
基于乘积季节模型的GPRS小区流量预测 被引量:4
6
作者 周鑫 张锦 +1 位作者 李果 郑伯峰 《计算机工程》 CAS CSCD 北大核心 2010年第18期76-78,共3页
针对GPRS小区流量预测问题,提出一种基于乘积季节自回归移动平均模型的解决方法。该方法分析GPRS小区流量的变化情况,利用小区流量以天为周期变化的特点,应用该模型进行建模,得到GPRS小区的流量变化预测模型。该预测模型可以根据GPRS小... 针对GPRS小区流量预测问题,提出一种基于乘积季节自回归移动平均模型的解决方法。该方法分析GPRS小区流量的变化情况,利用小区流量以天为周期变化的特点,应用该模型进行建模,得到GPRS小区的流量变化预测模型。该预测模型可以根据GPRS小区过去的流量情况,预测将来某一时间的流量,为提前采取措施保持GPRS小区性能提供一定的决策依据。 展开更多
关键词 GPRS 小区 乘积季节自回归移动平均模型 流量预测
在线阅读 下载PDF
GPRS小区流量预测中时序模型的比较研究 被引量:2
7
作者 周鑫 张锦 +1 位作者 赵研科 王如龙 《计算机应用》 CSCD 北大核心 2010年第4期884-887,共4页
针对通用无线分组业务(GPRS)小区流量预测问题,对几种典型时序预测模型的性能进行了综合分析。在总结时序预测模型使用步骤的基础上,分析了自回归(AR)、自回归移动平均(ARIMA)和乘积季节自回归求和移动平均(ARIMA)模型的性能。首先,对G... 针对通用无线分组业务(GPRS)小区流量预测问题,对几种典型时序预测模型的性能进行了综合分析。在总结时序预测模型使用步骤的基础上,分析了自回归(AR)、自回归移动平均(ARIMA)和乘积季节自回归求和移动平均(ARIMA)模型的性能。首先,对GPRS小区流量的变化情况进行分析;再根据流量的自相关系数和偏相关系数,从不同的角度进行分析,分别得到了流量变化的AR模型和ARMA模型;进而利用小区流量以天为周期变化的特点,得到了流量变化的乘积季节ARIMA模型。最后根据GPRS小区历史流量数据,应用这三种模型预测将来某一时间的流量,并对模型性能进行比较研究。 展开更多
关键词 流量预测 通用无线分组业务小区 自回归模型 自回归移动平均模型 乘积季节自回归求和移动平均模型
在线阅读 下载PDF
基于季节性分解的时间序列在主变压器缺陷率预测中的应用 被引量:7
8
作者 李勋 张宏钊 +4 位作者 姚森敬 黄荣辉 刘顺桂 吕启深 张林 《电网与清洁能源》 北大核心 2015年第11期19-25,共7页
针对主变压器缺陷率序列具有的非线性和非平稳性特点,以及主变压器缺陷发生具有季节性的特征,提出将主变压器缺陷率序列进行季节性分解和时间序列ARIMA预测相结合对主变缺陷率进行预测,以探寻较为有效的主变压器缺陷率的预测方法。首先... 针对主变压器缺陷率序列具有的非线性和非平稳性特点,以及主变压器缺陷发生具有季节性的特征,提出将主变压器缺陷率序列进行季节性分解和时间序列ARIMA预测相结合对主变缺陷率进行预测,以探寻较为有效的主变压器缺陷率的预测方法。首先,对原始序列进行预处理,将其分解为一系列不同的模式分量,这样能够突出原始主变缺陷率序列的局部特征信息;然后,分析各分量,根据其变化规律,采用时间序列法建立相应的模型并进行预测,这样既简化了建立的模型又降低了不同分量间的干涉和耦合;最后将各分量的预测值叠加得到缺陷率的预测值。算例结果表明,该方法具有较好的预测效果。 展开更多
关键词 主变压器 缺陷率 季节性分解 时间序列 自回归积分滑动平均模型 预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部