In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regre...In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regression method to analyze the effect, of changing the rules of mine airflows, on the stability of a mine ventilation system. The amount of air ( Qj ) is determined for the major airway and an optimum regression equation was derived for Qi as a function of the independent variable ( Ri ), i.e., the venti- lation resistance between different airways. Therefore, corresponding countermeasures are proposed according to the changes in airflows. The calculated results agree very well with our practical situation, indicating that multiple regression analysis is simple, quick and practical and is therefore an effective method to analyze the stability of mine ventilation systems.展开更多
There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow ...There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow to tunnels due to their simplicity and practical base theory. Investigations show that the real amount of water infiltrating into jointed tunnels is much less than calculated amount using analytical methods and obtained results are very dependent on tunnel's geometry and environmental situations. In this study, using multiple regression analysis, a new empirical model for estimation of groundwater seepage into circular tunnels was introduced. Our data was acquired from field surveys and laboratory analysis of core samples. New regression variables were defined after perusing single and two variables relationship between groundwater seepage and other variables. Finally, an appropriate model for estima- tion of leakage was obtained using the stepwise algorithm. Statistics like R, R2, R2e and the histogram of residual values in the model represent a good reputation and fitness for this model to estimate the groundwater seepage into tunnels. The new experimental model was used for the test data and results were satisfactory. Therefore, multiple regression analysis is an effective and efficient way to estimate the groundwater seeoage into tunnels.展开更多
Line heating process is a very complex phenomenon as a variety of factors affects the amount of residual deformations. Numerical thermal and mechanical analysis of line heating for prediction of residual deformation i...Line heating process is a very complex phenomenon as a variety of factors affects the amount of residual deformations. Numerical thermal and mechanical analysis of line heating for prediction of residual deformation is time consuming. In the present work dimensional analysis has been presented to obtain a new relationship between input parameters and resulting residual deformations during line heating process. The temperature distribution and residual deformations for 6 mm, 8 mm, 10 mm and 12 mm thick steel plates were numerically estimated and compared with experimental and published results. Extensive data generated through a validated FE model were used to find co-relationship between the input parameters and the resulting residual deformation by multiple regression analysis. The results obtained from the deformation equations developed in this work compared well with those of the FE analysis with a drop in the computation time in the order of 100 (computational time required for FE analysis is around 7 200 second to 9 000 seconds and where the time required for getting the residual deformation by developed equations is only 60 to 90 seconds).展开更多
Spatio-temporal assessment of the above ground biomass (AGB) is a cumbersome task due to the difficulties associated with the measurement of different tree parameters such as girth at breast height and height of tre...Spatio-temporal assessment of the above ground biomass (AGB) is a cumbersome task due to the difficulties associated with the measurement of different tree parameters such as girth at breast height and height of trees. The present research was conducted in the campus of Birla Institute of Technology, Mesra, Ranchi, India, which is predomi- nantly covered by Sal (Shorea robusta C. F. Gaertn). Two methods of regression analysis was employed to determine the potential of remote sensing parameters with the AGB measured in the field such as linear regression analysis between the AGB and the individual bands, principal components (PCs) of the bands, vegetation indices (VI), and the PCs of the VIs respectively and multiple linear regression (MLR) analysis be- tween the AGB and all the variables in each category of data. From the linear regression analysis, it was found that only the NDVI exhibited regression coefficient value above 0.80 with the remaining parameters showing very low values. On the other hand, the MLR based analysis revealed significantly improved results as evidenced by the occurrence of very high correlation coefficient values of greater than 0.90 determined between the computed AGB from the MLR equations and field-estimated AGB thereby ascertaining their superiority in providing reliable estimates of AGB. The highest correlation coefficient of 0.99 is found with the MLR involving PCs of VIs.展开更多
Objective: To introduce a method to calculate cardiovascular age, a new, accurate and much simpler index for assessing cardiovascular autonomic regulatory function, based on statistical analysis of heart rate and bloo...Objective: To introduce a method to calculate cardiovascular age, a new, accurate and much simpler index for assessing cardiovascular autonomic regulatory function, based on statistical analysis of heart rate and blood pressure variability (HRV and BPV) and baroreflex sensitivity (BRS) data. Methods: Firstly, HRV and BPV of 89 healthy aviation personnel were analyzed by the conventional autoregressive (AR) spectral analysis and their spontaneous BRS was obtained by the sequence method. Secondly, principal component analysis was conducted over original and derived indices of HRV, BPV and BRS data and the relevant principal components, PCi orig and PCi deri (i=1, 2, 3,...) were obtained. Finally, the equation for calculating cardiovascular age was obtained by multiple regression with the chronological age being assigned as the dependent variable and the principal components significantly related to age as the regressors. Results: The first four principal components of original indices accounted for over 90% of total variance of the indices, so did the first three principal components of derived indices. So, these seven principal components could reflect the information of cardiovascular autonomic regulation which was embodied in the 17 indices of HRV, BPV and BRS exactly with a minimal loss of information. Of the seven principal components, PC2 orig , PC4 orig and PC2 deri were negatively correlated with the chronological age ( P <0 05), whereas the PC3 orig was positively correlated with the chronological age ( P <0 01). The cardiovascular age thus calculated from the regression equation was significantly correlated with the chronological age among the 89 aviation personnel ( r =0.73, P <0 01). Conclusion: The cardiovascular age calculated based on a multi variate analysis of HRV, BPV and BRS could be regarded as a comprehensive indicator reflecting the age dependency of autonomic regulation of cardiovascular system in healthy aviation personnel.展开更多
Taking into account the characteristics of non-Newtonian fluids and the influence of latent heat of wax crystallization,this study establishes physical and mathematical models for the synergy of tubular heating and me...Taking into account the characteristics of non-Newtonian fluids and the influence of latent heat of wax crystallization,this study establishes physical and mathematical models for the synergy of tubular heating and mechanical stirring during the waxy crude oil heating process.Numerical calculations are conducted using the sliding grid technique and FVM.The focus of this study is on the impact of stirring rate(τ),horizontal deflection angle(θ1),vertical deflection angle(θ2),and stirring diameter(D)on the heating effect of crude oil.Our results show that asτincreases from 200 rpm to 500 rpm and D increases from 400 mm to 600 mm,there is an improvement in the average crude oil temperature and temperature uniformity.Additionally,heating efficiency increases by 0.5%and 1%,while the volume of the low-temperature region decreases by 57.01 m^(3) and 36.87 m3,respectively.Asθ1 andθ2 increase from 0°to 12°,the average crude oil temperature,temperature uniformity,and heating efficiency decrease,while the volume of the low-temperature region remains basically the same.Grey correlation analysis is used to rank the importance of stirring parameters in the following order:τ>θ1>θ2>D.Subsequently,multiple regression analysis is used to quantitatively describe the relationship between different stirring parameters and heat transfer evaluation indices through equations.Finally,based on entropy generation minimization,the stirring parameters with optimal heat transfer performance are obtained when τ=350 rpm,θ1=θ2=0°,and D=500 mm.展开更多
基金Project F010206 supported by the National Natural Science Foundation of China
文摘In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regression method to analyze the effect, of changing the rules of mine airflows, on the stability of a mine ventilation system. The amount of air ( Qj ) is determined for the major airway and an optimum regression equation was derived for Qi as a function of the independent variable ( Ri ), i.e., the venti- lation resistance between different airways. Therefore, corresponding countermeasures are proposed according to the changes in airflows. The calculated results agree very well with our practical situation, indicating that multiple regression analysis is simple, quick and practical and is therefore an effective method to analyze the stability of mine ventilation systems.
文摘There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow to tunnels due to their simplicity and practical base theory. Investigations show that the real amount of water infiltrating into jointed tunnels is much less than calculated amount using analytical methods and obtained results are very dependent on tunnel's geometry and environmental situations. In this study, using multiple regression analysis, a new empirical model for estimation of groundwater seepage into circular tunnels was introduced. Our data was acquired from field surveys and laboratory analysis of core samples. New regression variables were defined after perusing single and two variables relationship between groundwater seepage and other variables. Finally, an appropriate model for estima- tion of leakage was obtained using the stepwise algorithm. Statistics like R, R2, R2e and the histogram of residual values in the model represent a good reputation and fitness for this model to estimate the groundwater seepage into tunnels. The new experimental model was used for the test data and results were satisfactory. Therefore, multiple regression analysis is an effective and efficient way to estimate the groundwater seeoage into tunnels.
文摘Line heating process is a very complex phenomenon as a variety of factors affects the amount of residual deformations. Numerical thermal and mechanical analysis of line heating for prediction of residual deformation is time consuming. In the present work dimensional analysis has been presented to obtain a new relationship between input parameters and resulting residual deformations during line heating process. The temperature distribution and residual deformations for 6 mm, 8 mm, 10 mm and 12 mm thick steel plates were numerically estimated and compared with experimental and published results. Extensive data generated through a validated FE model were used to find co-relationship between the input parameters and the resulting residual deformation by multiple regression analysis. The results obtained from the deformation equations developed in this work compared well with those of the FE analysis with a drop in the computation time in the order of 100 (computational time required for FE analysis is around 7 200 second to 9 000 seconds and where the time required for getting the residual deformation by developed equations is only 60 to 90 seconds).
文摘Spatio-temporal assessment of the above ground biomass (AGB) is a cumbersome task due to the difficulties associated with the measurement of different tree parameters such as girth at breast height and height of trees. The present research was conducted in the campus of Birla Institute of Technology, Mesra, Ranchi, India, which is predomi- nantly covered by Sal (Shorea robusta C. F. Gaertn). Two methods of regression analysis was employed to determine the potential of remote sensing parameters with the AGB measured in the field such as linear regression analysis between the AGB and the individual bands, principal components (PCs) of the bands, vegetation indices (VI), and the PCs of the VIs respectively and multiple linear regression (MLR) analysis be- tween the AGB and all the variables in each category of data. From the linear regression analysis, it was found that only the NDVI exhibited regression coefficient value above 0.80 with the remaining parameters showing very low values. On the other hand, the MLR based analysis revealed significantly improved results as evidenced by the occurrence of very high correlation coefficient values of greater than 0.90 determined between the computed AGB from the MLR equations and field-estimated AGB thereby ascertaining their superiority in providing reliable estimates of AGB. The highest correlation coefficient of 0.99 is found with the MLR involving PCs of VIs.
文摘Objective: To introduce a method to calculate cardiovascular age, a new, accurate and much simpler index for assessing cardiovascular autonomic regulatory function, based on statistical analysis of heart rate and blood pressure variability (HRV and BPV) and baroreflex sensitivity (BRS) data. Methods: Firstly, HRV and BPV of 89 healthy aviation personnel were analyzed by the conventional autoregressive (AR) spectral analysis and their spontaneous BRS was obtained by the sequence method. Secondly, principal component analysis was conducted over original and derived indices of HRV, BPV and BRS data and the relevant principal components, PCi orig and PCi deri (i=1, 2, 3,...) were obtained. Finally, the equation for calculating cardiovascular age was obtained by multiple regression with the chronological age being assigned as the dependent variable and the principal components significantly related to age as the regressors. Results: The first four principal components of original indices accounted for over 90% of total variance of the indices, so did the first three principal components of derived indices. So, these seven principal components could reflect the information of cardiovascular autonomic regulation which was embodied in the 17 indices of HRV, BPV and BRS exactly with a minimal loss of information. Of the seven principal components, PC2 orig , PC4 orig and PC2 deri were negatively correlated with the chronological age ( P <0 05), whereas the PC3 orig was positively correlated with the chronological age ( P <0 01). The cardiovascular age thus calculated from the regression equation was significantly correlated with the chronological age among the 89 aviation personnel ( r =0.73, P <0 01). Conclusion: The cardiovascular age calculated based on a multi variate analysis of HRV, BPV and BRS could be regarded as a comprehensive indicator reflecting the age dependency of autonomic regulation of cardiovascular system in healthy aviation personnel.
基金supported by the National Natural Science Foundation of China(Grant no.52304065)China Postdoctoral Science Foundation(Grant no.2022MD723759).
文摘Taking into account the characteristics of non-Newtonian fluids and the influence of latent heat of wax crystallization,this study establishes physical and mathematical models for the synergy of tubular heating and mechanical stirring during the waxy crude oil heating process.Numerical calculations are conducted using the sliding grid technique and FVM.The focus of this study is on the impact of stirring rate(τ),horizontal deflection angle(θ1),vertical deflection angle(θ2),and stirring diameter(D)on the heating effect of crude oil.Our results show that asτincreases from 200 rpm to 500 rpm and D increases from 400 mm to 600 mm,there is an improvement in the average crude oil temperature and temperature uniformity.Additionally,heating efficiency increases by 0.5%and 1%,while the volume of the low-temperature region decreases by 57.01 m^(3) and 36.87 m3,respectively.Asθ1 andθ2 increase from 0°to 12°,the average crude oil temperature,temperature uniformity,and heating efficiency decrease,while the volume of the low-temperature region remains basically the same.Grey correlation analysis is used to rank the importance of stirring parameters in the following order:τ>θ1>θ2>D.Subsequently,multiple regression analysis is used to quantitatively describe the relationship between different stirring parameters and heat transfer evaluation indices through equations.Finally,based on entropy generation minimization,the stirring parameters with optimal heat transfer performance are obtained when τ=350 rpm,θ1=θ2=0°,and D=500 mm.