期刊文献+
共找到951篇文章
< 1 2 48 >
每页显示 20 50 100
Lithofacies identi cation using support vector machine based on local deep multi-kernel learning 被引量:12
1
作者 Xing-Ye Liu Lin Zhou +1 位作者 Xiao-Hong Chen Jing-Ye Li 《Petroleum Science》 SCIE CAS CSCD 2020年第4期954-966,共13页
Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacie... Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacies and seismic information that is affected by many factors is complicated.Machine learning has received extensive attention in recent years,among which support vector machine(SVM) is a potential method for lithofacies classification.Lithofacies classification involves identifying various types of lithofacies and is generally a nonlinear problem,which needs to be solved by means of the kernel function.Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification.However,it is very difficult to determine the kernel function and the parameters,which is restricted by human factors.Besides,its computational efficiency is low.A lithofacies classification method based on local deep multi-kernel learning support vector machine(LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is developed.The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies and seismic elastic information.The calculation speed will be expedited at no cost with respect to discriminant accuracy for multi-class lithofacies identification.Both the model data test results and the field data application results certify advantages of the method.This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM. 展开更多
关键词 Lithofacies discriminant support vector machine Multi-kernel learning Reservoir prediction machine learning
在线阅读 下载PDF
POSITIVE DEFINITE KERNEL IN SUPPORT VECTOR MACHINE(SVM) 被引量:3
2
作者 谢志鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期114-121,共8页
The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used t... The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed. 展开更多
关键词 support vector machines(SVMs) mercer kernel reproducing kernel positive definite kernel scaling and wavelet kernel
在线阅读 下载PDF
基于Support Vector Machine和UPLC-QTOF-MS的人参生长年限数字化鉴定分析
3
作者 王献瑞 郭晓晗 +6 位作者 张宇 张佳婷 贺方良 荆文光 李明华 程显隆 魏锋 《中国现代中药》 CAS 2024年第12期2049-2055,共7页
目的:基于超高效液相色谱-四极杆飞行时间质谱法(UPLC-QTOF-MS)分析并经量化处理,结合支持向量机(SVM)进行数据建模,对人参生长年限进行数字化鉴定分析。方法:对3、4、5、15年生的人参样品进行UPLC-QTOF-MS分析,以混合质量控制样品为基... 目的:基于超高效液相色谱-四极杆飞行时间质谱法(UPLC-QTOF-MS)分析并经量化处理,结合支持向量机(SVM)进行数据建模,对人参生长年限进行数字化鉴定分析。方法:对3、4、5、15年生的人参样品进行UPLC-QTOF-MS分析,以混合质量控制样品为基准进行峰位校正、提取并经量化处理,获取反映化学成分信息的精确质量数-保留时间数据对(EMRT)。结合SVM进行数据建模,同时在5、10、20折内部交叉验证的基础上,通过准确率(Acc)、精确率(P)、曲线下面积(AUC)等参数进行模型评价。基于所建数据模型进行人参生长年限的鉴定。结果:经量化处理后80批人参均获得6556个EMRT,结合SVM建立的数据模型具有优秀的辨识效果,Acc、P及AUC均大于0.900且外部鉴定验证正确率为100%。结论:基于UPLC-QTOF-MS分析,并结合SVM算法能够高效准确地实现人参生长年限的数字化鉴定,可为中药材生长年限鉴定探索及中药质量控制提供参考。 展开更多
关键词 人参 生长年限 机器学习 支持向量机 数字化 超高效液相色谱-四极杆飞行时间质谱法
在线阅读 下载PDF
Chaotic time series prediction using fuzzy sigmoid kernel-based support vector machines 被引量:2
4
作者 刘涵 刘丁 邓凌峰 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第6期1196-1200,共5页
Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel i... Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel in SVM is drawn in a more natural way by using the fuzzy logic method proposed in this paper. This method provides easy hardware implementation and straightforward interpretability. Experiments on two typical chaotic time series predictions have been carried out and the obtained results show that the average CPU time can be reduced significantly at the cost of a small decrease in prediction accuracy, which is favourable for the hardware implementation for chaotic time series prediction. 展开更多
关键词 support vector machines chaotic time series prediction fuzzy sigmoid kernel
在线阅读 下载PDF
A Novel Kernel for Least Squares Support Vector Machine
5
作者 冯伟 赵永平 +2 位作者 杜忠华 李德才 王立峰 《Defence Technology(防务技术)》 SCIE EI CAS 2012年第4期240-247,共8页
Extreme learning machine(ELM) has attracted much attention in recent years due to its fast convergence and good performance.Merging both ELM and support vector machine is an important trend,thus yielding an ELM kernel... Extreme learning machine(ELM) has attracted much attention in recent years due to its fast convergence and good performance.Merging both ELM and support vector machine is an important trend,thus yielding an ELM kernel.ELM kernel based methods are able to solve the nonlinear problems by inducing an explicit mapping compared with the commonly-used kernels such as Gaussian kernel.In this paper,the ELM kernel is extended to the least squares support vector regression(LSSVR),so ELM-LSSVR was proposed.ELM-LSSVR can be used to reduce the training and test time simultaneously without extra techniques such as sequential minimal optimization and pruning mechanism.Moreover,the memory space for the training and test was relieved.To confirm the efficacy and feasibility of the proposed ELM-LSSVR,the experiments are reported to demonstrate that ELM-LSSVR takes the advantage of training and test time with comparable accuracy to other algorithms. 展开更多
关键词 计算技术 理论 方法 自动机理论
在线阅读 下载PDF
Machine learning methods for predicting CO_(2) solubility in hydrocarbons
6
作者 Yi Yang Binshan Ju +1 位作者 Guangzhong Lü Yingsong Huang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3340-3349,共10页
The application of carbon dioxide(CO_(2)) in enhanced oil recovery(EOR) has increased significantly, in which CO_(2) solubility in oil is a key parameter in predicting CO_(2) flooding performance. Hydrocarbons are the... The application of carbon dioxide(CO_(2)) in enhanced oil recovery(EOR) has increased significantly, in which CO_(2) solubility in oil is a key parameter in predicting CO_(2) flooding performance. Hydrocarbons are the major constituents of oil, thus the focus of this work lies in investigating the solubility of CO_(2) in hydrocarbons. However, current experimental measurements are time-consuming, and equations of state can be computationally complex. To address these challenges, we developed an artificial intelligence-based model to predict the solubility of CO_(2) in hydrocarbons under varying conditions of temperature, pressure, molecular weight, and density. Using experimental data from previous studies,we trained and predicted the solubility using four machine learning models: support vector regression(SVR), extreme gradient boosting(XGBoost), random forest(RF), and multilayer perceptron(MLP).Among four models, the XGBoost model has the best predictive performance, with an R^(2) of 0.9838.Additionally, sensitivity analysis and evaluation of the relative impacts of each input parameter indicate that the prediction of CO_(2) solubility in hydrocarbons is most sensitive to pressure. Furthermore, our trained model was compared with existing models, demonstrating higher accuracy and applicability of our model. The developed machine learning-based model provides a more efficient and accurate approach for predicting CO_(2) solubility in hydrocarbons, which may contribute to the advancement of CO_(2)-related applications in the petroleum industry. 展开更多
关键词 CO_(2)solubility machine learning support vector regression Extreme gradient boosting Random forest Multi-layer perceptron
在线阅读 下载PDF
Machine learning model based on non-convex penalized huberized-SVM
7
作者 Peng Wang Ji Guo Lin-Feng Li 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期81-94,共14页
The support vector machine(SVM)is a classical machine learning method.Both the hinge loss and least absolute shrinkage and selection operator(LASSO)penalty are usually used in traditional SVMs.However,the hinge loss i... The support vector machine(SVM)is a classical machine learning method.Both the hinge loss and least absolute shrinkage and selection operator(LASSO)penalty are usually used in traditional SVMs.However,the hinge loss is not differentiable,and the LASSO penalty does not have the Oracle property.In this paper,the huberized loss is combined with non-convex penalties to obtain a model that has the advantages of both the computational simplicity and the Oracle property,contributing to higher accuracy than traditional SVMs.It is experimentally demonstrated that the two non-convex huberized-SVM methods,smoothly clipped absolute deviation huberized-SVM(SCAD-HSVM)and minimax concave penalty huberized-SVM(MCP-HSVM),outperform the traditional SVM method in terms of the prediction accuracy and classifier performance.They are also superior in terms of variable selection,especially when there is a high linear correlation between the variables.When they are applied to the prediction of listed companies,the variables that can affect and predict financial distress are accurately filtered out.Among all the indicators,the indicators per share have the greatest influence while those of solvency have the weakest influence.Listed companies can assess the financial situation with the indicators screened by our algorithm and make an early warning of their possible financial distress in advance with higher precision. 展开更多
关键词 Huberized loss machine learning Non-convex penalties support vector machine(SVM)
在线阅读 下载PDF
Mandarin Digits Speech Recognition Using Support Vector Machines 被引量:2
8
作者 谢湘 匡镜明 《Journal of Beijing Institute of Technology》 EI CAS 2005年第1期9-12,共4页
A method of applying support vector machine (SVM) in speech recognition was proposed, and a speech recognition system for mandarin digits was built up by SVMs. In the system, vectors were linearly extracted from speec... A method of applying support vector machine (SVM) in speech recognition was proposed, and a speech recognition system for mandarin digits was built up by SVMs. In the system, vectors were linearly extracted from speech feature sequence to make up time-aligned input patterns for SVM, and the decisions of several 2-class SVM classifiers were employed for constructing an N-class classifier. Four kinds of SVM kernel functions were compared in the experiments of speaker-independent speech recognition of mandarin digits. And the kernel of radial basis function has the highest accurate rate of 99.33%, which is better than that of the baseline system based on hidden Markov models (HMM) (97.08%). And the experiments also show that SVM can outperform HMM especially when the samples for learning were very limited. 展开更多
关键词 speech recognition support vector machine (SVM) kernel function
在线阅读 下载PDF
Estimating coal reserves using a support vector machine 被引量:3
9
作者 LIU Wen-kai WANG Rui-fang ZHENG Xiao-juan 《Journal of China University of Mining and Technology》 EI 2008年第1期103-106,共4页
The basic principles of the Support Vector Machine (SVM) are introduced in this paper. A specific process to establish an SVM prediction model is given. To improve the precision of coal reserve estimation, a support v... The basic principles of the Support Vector Machine (SVM) are introduced in this paper. A specific process to establish an SVM prediction model is given. To improve the precision of coal reserve estimation, a support vector machine method, based on statistical learning theory, is put forward. The SVM model was trained and tested by using the existing exploration and exploitation data of Chencun mine of Yima bureau’s as the input data. Then coal reserves within a particular region were calculated. These calculated results and the actual results of the exploration block were compared. The maximum relative error was 10.85%, within the scope of acceptable error limits. The results show that the SVM coal reserve calculation method is reliable. This method is simple, practical and valuable. 展开更多
关键词 support vector machine statistical learning theory coal reserve
在线阅读 下载PDF
Machine learning methods for rockburst prediction-state-of-the-art review 被引量:30
10
作者 Yuanyuan Pu Derek B.Apel +1 位作者 Victor Liu Hani Mitri 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第4期565-570,共6页
One of the most serious mining disasters in underground mines is rockburst phenomena.They can lead to injuries and even fatalities as well as damage to underground openings and mining equipment.This has forced many re... One of the most serious mining disasters in underground mines is rockburst phenomena.They can lead to injuries and even fatalities as well as damage to underground openings and mining equipment.This has forced many researchers to investigate alternative methods to predict the potential for rockburst occurrence.However,due to the highly complex relation between geological,mechanical and geometric parameters of the mining environment,the traditional mechanics-based prediction methods do not always yield precise results.With the emergence of machine learning methods,a breakthrough in the prediction of rockburst occurrence has become possible in recent years.This paper presents a state-ofthe-art review of various applications of machine learning methods for the prediction of rockburst potential.First,existing rockburst prediction methods are introduced,and the limitations of such methods are highlighted.A brief overview of typical machine learning methods and their main features as predictive tools is then presented.The current applications of machine learning models in rockburst prediction are surveyed,with related mechanisms,technical details and performance analysis. 展开更多
关键词 ROCKBURST prediction BURST LIABILITY Artificial NEURAL network support vector machine Deep learning
在线阅读 下载PDF
Machine Learning Approach to Enhance the Performance of MNP?Labeled Lateral Flow Immunoassay 被引量:4
11
作者 Wenqiang Yan Kan Wang +3 位作者 Hao Xu Xuyang Huo Qinghui Jin Daxiang Cui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期132-146,共15页
The use of magnetic nanoparticle(MNP)-labeled immunochromatography test strips(ICTSs) is very important for point-ofcare testing(POCT). However, common diagnostic methods cannot accurately analyze the weak magnetic si... The use of magnetic nanoparticle(MNP)-labeled immunochromatography test strips(ICTSs) is very important for point-ofcare testing(POCT). However, common diagnostic methods cannot accurately analyze the weak magnetic signal from ICTSs, limiting the applications of POCT. In this study, an ultrasensitive multiplex biosensor was designed to overcome the limitations of capturing and normalization of the weak magnetic signal from MNPs on ICTSs. A machine learning model for sandwich assays was constructed and used to classify weakly positive and negative samples, which significantly enhanced the specificity and sensitivity. The potential clinical application was evaluated by detecting 50 human chorionic gonadotropin(HCG) samples and 59 myocardial infarction serum samples. The quantitative range for HCG was 1–1000 mIU mL^(-1) and the ideal detection limit was 0.014 mIU mL^(-1), which was well below the clinical threshold. Quantitative detection results of multiplex cardiac markers showed good linear correlations with standard values. The proposed multiplex assay can be readily adapted for identifying other biomolecules and also be used in other applications such as environmental monitoring, food analysis, and national security. 展开更多
关键词 POINT-OF-CARE testing IMMUNOCHROMATOGRAPHY test STRIPS Magnetic nanoparticles machine learning support vector machine
在线阅读 下载PDF
LEARNING RATES OF KERNEL-BASED ROBUST CLASSIFICATION 被引量:1
12
作者 Shuhua WANG Baohuai SHENG 《Acta Mathematica Scientia》 SCIE CSCD 2022年第3期1173-1190,共18页
This paper considers a robust kernel regularized classification algorithm with a non-convex loss function which is proposed to alleviate the performance deterioration caused by the outliers.A comparison relationship b... This paper considers a robust kernel regularized classification algorithm with a non-convex loss function which is proposed to alleviate the performance deterioration caused by the outliers.A comparison relationship between the excess misclassification error and the excess generalization error is provided;from this,along with the convex analysis theory,a kind of learning rate is derived.The results show that the performance of the classifier is effected by the outliers,and the extent of impact can be controlled by choosing the homotopy parameters properly. 展开更多
关键词 support vector machine robust classification quasiconvex loss function learning rate right-sided directional derivative
在线阅读 下载PDF
Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction
13
作者 Jiu-Qiang Yang Nian-Tian Lin +3 位作者 Kai Zhang Yan Cui Chao Fu Dong Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2329-2344,共16页
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i... Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs. 展开更多
关键词 Multicomponent seismic data Deep learning Adaptive particle swarm optimization Convolutional neural network Least squares support vector machine Feature optimization Gas-bearing distribution prediction
在线阅读 下载PDF
基于物理驱动支持向量机方法的地震作用下结构动力响应求解
14
作者 杜轲 吴文贤 +1 位作者 林志鹏 骆欢 《振动与冲击》 北大核心 2025年第3期284-290,共7页
物理驱动机器学习是一种将物理原理融入机器学习框架的前沿方法。通过引入物理知识,该方法旨在使模型更为贴合实际世界的物理规律和约束,以提高模型在学习过程中对数据本质特征的准确捕捉。该研究使用了一种以支持向量机为基础的物理驱... 物理驱动机器学习是一种将物理原理融入机器学习框架的前沿方法。通过引入物理知识,该方法旨在使模型更为贴合实际世界的物理规律和约束,以提高模型在学习过程中对数据本质特征的准确捕捉。该研究使用了一种以支持向量机为基础的物理驱动方法,用于精确计算结构的动力响应。该算法通过最小化多输出最小二乘支持向量机的目标函数,实现了对回归模型参数的精准拟合。同时,通过在特征空间中引入系统动态平衡方程和初始条件的物理约束,无需事先训练数据即可有效计算结构的动力响应。随后开展在地震动荷载作用下的单自由度体系和二层剪切框架多自由度体系的动力响应,并将所用方法与传统方法的结果进行了对比。分析结果表明,提出的物理驱动机器学习方法在精度和大时间步长性能方面均显著优于传统方法。 展开更多
关键词 机器学习 支持向量机 物理驱动 无标记数据 结构动力响应分析
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
15
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
极薄煤层破碎顶板条件下液压支架带压移架残余支撑力决策方法
16
作者 张传伟 张刚强 +4 位作者 路正雄 李林岳 何正伟 龚凌霄 黄骏峰 《工矿自动化》 北大核心 2025年第3期22-31,38,共11页
在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深... 在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深度混合核极限学习机(DHKELM)的液压支架带压移架残余支撑力决策方法。在混合核极限学习机(HKELM)基础上引入极限学习机自动编码器(ELM-AE)结构来构建DHKELM模型,以增强对复杂输入的特征提取和非线性映射能力;引入ICMIC混沌映射、Lévy飞行和贪婪策略对蜣螂算法(DBO)进行改进,形成具备更高寻优精度和更快收敛速度的IDBO算法;利用IDBO算法优化DHKELM模型的超参数,建立IDBO-DHKELM模型。结合极薄煤层综采工作面液压支架带压移架实测数据,通过可视化和相关性分析,确定支架号、带压移架前支架支撑力、推移油缸进液压力和推移油缸行程变化速度作为影响残余支撑力的关键特征,并构建残余支撑力决策样本数据集,最终完成IDBO-DHKELM模型的训练与评估。实验结果表明:基于IDBO-DHKELM模型的液压支架带压移架残余支撑力决策结果的均方根误差(RMSE)、平均绝对误差(MAE)及决定系数(R^(2))分别为0.143,0.119,0.971,具有较高的决策精确度。 展开更多
关键词 极薄煤层 液压支架 带压移架 残余支撑力 改进蜣螂算法 深度混合核极限学习机
在线阅读 下载PDF
基于机器学习的农田土壤抗剪强度参数检测方法研究
17
作者 于艳艳 朱龙图 刘鹤 《农机化研究》 北大核心 2025年第1期7-15,共9页
土壤抗剪强度参数包括粘聚力和内摩擦角,是评价土壤侵蚀敏感性和反映耕层耕作性能的重要指标。为实现农田土壤抗剪切强度参数的快速检测,提出了一种基于机器学习的土壤抗剪切强度参数检测方法。以STM32单片机为核心处理器,采用圆锥杆、... 土壤抗剪强度参数包括粘聚力和内摩擦角,是评价土壤侵蚀敏感性和反映耕层耕作性能的重要指标。为实现农田土壤抗剪切强度参数的快速检测,提出了一种基于机器学习的土壤抗剪切强度参数检测方法。以STM32单片机为核心处理器,采用圆锥杆、滚珠丝杆滑台、三角支架等构建土壤数据采集装置,利用DYMH-103柱式压力传感器和FlexiForce薄膜传感器分别检测圆锥杆贯入土壤的锥尖阻力和锥侧压力,采用CSF11土壤水分传感器获取土壤含水率信息,通过多传感器数据特征向量提取构建建模数据集。数据集相关性分析结果表明:土壤抗剪强度参数与锥尖阻力、锥侧压力和土壤含水率之间具有明显相关性。利用蒙特卡罗交叉验证(Monte Carlo Cross Validation,MCCV)剔除了数据集中的4个异常样本;同时,提出了一种ELM-PLSR组合建模算法,以决定系数R^(2)和RPD为评价指标,对比评估了ELM、PLSR和ELM-PLSR 3种不同机器学习模型,结果表明:ELM-PLSR模型预测性能优于ELM模型和PLSR模型;检测粘聚力时,对应的R^(2)、RPD分别为0.919和3.475;检测内摩擦角时,对应的R 2和RPD分别为0.910和3.304。研究结果可为土壤抗剪强度参数快速测量提供参考。 展开更多
关键词 机器学习 土壤抗剪强度 多传感器 特征向量 预测模型
在线阅读 下载PDF
基于支持向量回归(SVR)的马尾松木材脱脂率预测
18
作者 郭佳伦 钟浩珉 +1 位作者 赵俊博 陈瑶 《北京林业大学学报》 北大核心 2025年第3期151-161,共11页
【目的】脱脂处理是提升松木制品性能的重要手段,但传统脱脂率检测方法耗时且破坏试样。本研究旨在探索一种快速、无损的脱脂率检测方法,基于木材表面颜色变化,利用支持向量回归(SVR)构建脱脂率预测模型。【方法】采用氨气-水蒸气在高... 【目的】脱脂处理是提升松木制品性能的重要手段,但传统脱脂率检测方法耗时且破坏试样。本研究旨在探索一种快速、无损的脱脂率检测方法,基于木材表面颜色变化,利用支持向量回归(SVR)构建脱脂率预测模型。【方法】采用氨气-水蒸气在高温条件下对马尾松木材进行处理,分析不同条件对木材表面颜色参数和脱脂率的影响,探讨其相关性。利用3种不同的核函数(多项式核函数、Sigmoid核函数、径向基函数)构建基于SVR的脱脂率预测模型,并通过比较选择最优模型。【结果】经氨气-水蒸气热处理脱脂后,马尾松表面明度(L^(*))和黄蓝指数(b^(*))低于未处理木材,红绿指数(a^(*))则高于未处理木材。随着氨水质量分数和处理温度的增加,L^(*)、a^(*)和b^(*)呈逐渐降低趋势,总色差(ΔE^(*))逐渐增大,脱脂率随之提高。在180℃、较高氨水质量分数的处理条件下,ΔE^(*)达到最大值58.89,脱脂率达到最高值70.00%。颜色参数与脱脂率呈局部二次函数关系,相关系数最高为0.713。在以径向基函数为核函数的SVR模型中,预测含脂率和脱脂率的均方根误差分别为0.523和4.315,决定系数分别为0.847和0.823,该预测模型可应用于脱脂率检测的前期筛选。【结论】本研究成功构建了基于SVR的马尾松木材脱脂率预测模型。该模型在脱脂率检测的前期筛选中具有一定的应用价值,能够在一定程度上实现检测过程的快速、简便和无损化。本研究为马尾松木材脱脂率检测的效率提升和质量改进提供了一种新的方法。 展开更多
关键词 支持向量回归 机器学习 预测模型 脱脂 马尾松 颜色参数
在线阅读 下载PDF
基于监督核熵的空压机阀片故障诊断优化
19
作者 赵凯 王永坚 +1 位作者 蔡杭溪 李劼 《船海工程》 北大核心 2025年第1期13-19,共7页
空压机作为船舶航行过程中的关键设备,其运行状态的精准识别对船舶安全性能具有重要影响。鉴于空压机在工作过程中振动信息呈现出非平稳和非线性的特点,提出利用监督核熵成分分析对其特征数据选择,旨在通过数据降维保留关键特征信息,将... 空压机作为船舶航行过程中的关键设备,其运行状态的精准识别对船舶安全性能具有重要影响。鉴于空压机在工作过程中振动信息呈现出非平稳和非线性的特点,提出利用监督核熵成分分析对其特征数据选择,旨在通过数据降维保留关键特征信息,将处理后的特征信息输入到经过贝叶斯优化方法优化超参数的支持向量机模型中,以评估其在空压机状态识别方面的性能。经实验验证可知,该方法能够有效提升支持向量机模型的识别准确率,准确率可达98.47%。 展开更多
关键词 船用空压机 阀片故障诊断 监督核熵成分分析 贝叶斯优化 支持向量机
在线阅读 下载PDF
城市快速路互通交织区车辆的换道持续距离选择
20
作者 赵顗 安醇 +2 位作者 李铭浩 马健霄 怀硕 《浙江大学学报(工学版)》 北大核心 2025年第1期205-212,共8页
以城市快速路互通交织区换道行为为对象,研究换道过程中换道持续距离的选择行为.以实测车行轨迹数据为基础,利用因果推断理论识别影响换道持续距离选择的主要因素:目标车辆换道前后的速度和换道持续时间、当前车道和目标车道前后车的间... 以城市快速路互通交织区换道行为为对象,研究换道过程中换道持续距离的选择行为.以实测车行轨迹数据为基础,利用因果推断理论识别影响换道持续距离选择的主要因素:目标车辆换道前后的速度和换道持续时间、当前车道和目标车道前后车的间距.分别利用支持向量机模型和深度学习模型进行换道持续距离选择行为建模,检验换道持续距离选择行为影响因素分析的有效性.结果表明,经筛选后的影响因素提高了行为选择模型的预测速度以及深度学习模型的预测精度;支持向量模型虽然预测速度更快,但预测精度不如深度学习模型.对典型换道行为进行特征分析,为城市快速路互通交织区管理方案的制定奠定了理论基础,是对换道过程行为特征研究的有效补充,精确刻画了换道行为过程. 展开更多
关键词 城市快速路互通交织区 换道持续距离 因果推断 支持向量机 深度学习
在线阅读 下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部