In the wireless localization application, multipath propagation seriously affects the localization accuracy. This paper presents two algorithms to solve the multipath problem. Firstly, we improve the Line of Possible ...In the wireless localization application, multipath propagation seriously affects the localization accuracy. This paper presents two algorithms to solve the multipath problem. Firstly, we improve the Line of Possible Mobile Device(LPMD) algorithm by optimizing the utilization of the direct paths for single-bound scattering scenario. Secondly, the signal path reckoning method with the assistance of geographic information system is proposed to solve the problem of localization with multi-bound scattering paths. With the building model's idealization, the proposed method refers to the idea of ray tracing and dead reckoning. According to the rule of wireless signal reflection, the signal propagation path is reckoned using the measurements of emission angle and propagation distance, and then the estimated location can be obtained. Simulation shows that the proposed method obtains better results than the existing geometric localization methods in multipath environment when the angle error is controlled.展开更多
A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a spa...A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.展开更多
Using the underwater acoustic channel(UWA)for information dissemination requires a high data rate.However,some phenomena like refraction,reflection,phase shift,and high attenuation are undesirably apparent when the su...Using the underwater acoustic channel(UWA)for information dissemination requires a high data rate.However,some phenomena like refraction,reflection,phase shift,and high attenuation are undesirably apparent when the subject of using UWA is raised.Accordingly,sound communication would be a highly challenging task to be accomplished.Therefore,proposing a model of acoustic underwater communication channels is critical because of the multipath interference originating from the surface and bottom of the ocean.In this contribution,a straightforward geometry channel model for vertical and horizontal marine communications is presented.To do so,transmission loss and channel impulse response are analyzed as a function of transmitter and receiver distance,water depth,and reflection rate.The results of the model proposed in this paper are in very good agreement with those available in the literature.Initial findings indicate that the delay spread of horizontal communication with a 1000 m range reaches79 ms and 0.3 s for 30 m vertical communication.展开更多
基金supported by the National Natural Science Foundation of China (61471031)the Fundamental Research Funds for the Central Universities,Beijing Jiaotong University (2013JBZ001)+2 种基金National Science and Technology Major Project (2016ZX03001014006)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (No.2017D14)Shenzhen Peacock Program under Grant No.KQJSCX20160226193545
文摘In the wireless localization application, multipath propagation seriously affects the localization accuracy. This paper presents two algorithms to solve the multipath problem. Firstly, we improve the Line of Possible Mobile Device(LPMD) algorithm by optimizing the utilization of the direct paths for single-bound scattering scenario. Secondly, the signal path reckoning method with the assistance of geographic information system is proposed to solve the problem of localization with multi-bound scattering paths. With the building model's idealization, the proposed method refers to the idea of ray tracing and dead reckoning. According to the rule of wireless signal reflection, the signal propagation path is reckoned using the measurements of emission angle and propagation distance, and then the estimated location can be obtained. Simulation shows that the proposed method obtains better results than the existing geometric localization methods in multipath environment when the angle error is controlled.
基金Supported by the National Natural Science Foundation of China (61072098 61072099+1 种基金 60736006)PCSIRT-IRT1005
文摘A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.
文摘Using the underwater acoustic channel(UWA)for information dissemination requires a high data rate.However,some phenomena like refraction,reflection,phase shift,and high attenuation are undesirably apparent when the subject of using UWA is raised.Accordingly,sound communication would be a highly challenging task to be accomplished.Therefore,proposing a model of acoustic underwater communication channels is critical because of the multipath interference originating from the surface and bottom of the ocean.In this contribution,a straightforward geometry channel model for vertical and horizontal marine communications is presented.To do so,transmission loss and channel impulse response are analyzed as a function of transmitter and receiver distance,water depth,and reflection rate.The results of the model proposed in this paper are in very good agreement with those available in the literature.Initial findings indicate that the delay spread of horizontal communication with a 1000 m range reaches79 ms and 0.3 s for 30 m vertical communication.