期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Improving the spaceborne GNSS-R altimetric precision based on the novel multilayer feedforward neural network weighted joint prediction model
1
作者 Yiwen Zhang Wei Zheng Zongqiang Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期271-284,共14页
Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at... Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry. 展开更多
关键词 GNSS-R satellite constellations Sea surface altimetric precision Underwater navigation multilayer feedforward neural network
在线阅读 下载PDF
Neural Network inverse Adaptive Controller Based on Davidon Least Square 被引量:2
2
作者 Chen, Zengqiang Lu, Zhao Yuan, Zhuzhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期47-52,共6页
General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neu... General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme. 展开更多
关键词 ALGORITHMS Backpropagation Convergence of numerical methods feedforward neural networks Inverse problems Least squares approximations Mathematical models multilayer neural networks
在线阅读 下载PDF
基于HMM/MLFNN混合结构的说话人辨认研究 被引量:5
3
作者 包威权 陈珂 迟惠生 《北京大学学报(自然科学版)》 CAS CSCD 北大核心 1997年第3期359-367,共9页
将隐马尔可夫模型(HMM)与人工神经网络(ANN)相结合,既利用HMM能够较好地描述动态时间序列又利用ANN静态分类能力强的特点,应用于说话人辨认。本文将一个多层前馈神经网络(MLFNN)与HMM相结合构成混合模型,... 将隐马尔可夫模型(HMM)与人工神经网络(ANN)相结合,既利用HMM能够较好地描述动态时间序列又利用ANN静态分类能力强的特点,应用于说话人辨认。本文将一个多层前馈神经网络(MLFNN)与HMM相结合构成混合模型,与以往的方法不同,具有所需训练数据量小,推广性能良好的特点。对20个说话人辨认的实验结果表明。 展开更多
关键词 说话人辨认 隐马尔可夫模型 mlfnn 声音识别
在线阅读 下载PDF
混沌自适应非洲秃鹫优化算法训练多层感知器 被引量:5
4
作者 申晋祥 鲍美英 +1 位作者 张景安 周建慧 《计算机工程与设计》 北大核心 2024年第2期546-552,共7页
针对训练多层感知器(MLP)时,算法对初始值敏感、易陷入局部最优和收敛速度慢等问题,对新型启发式算法非洲秃鹫优化算法提出改进算法IAVOA。在初始化种群时引入Logistic混沌映射,增加种群的多样性;对最优秃鹫和次优秃鹫增加自适应权重系... 针对训练多层感知器(MLP)时,算法对初始值敏感、易陷入局部最优和收敛速度慢等问题,对新型启发式算法非洲秃鹫优化算法提出改进算法IAVOA。在初始化种群时引入Logistic混沌映射,增加种群的多样性;对最优秃鹫和次优秃鹫增加自适应权重系数,自动调整这两类秃鹫对普通秃鹫的引导作用;IAVOA用于MLP的训练,采用均方误差的平均值作为适应度函数寻找MLP的连接权重和偏差的最佳组合。选取4个不同复杂度的分类数据集,比较IAVOA算法与现有启发式算法对MLP训练后,MLP对数据分类的性能,仿真结果表明,IAVOA算法训练的MLP在数据分类准确率、全局搜索能力、收敛速度和稳定性方面均具有良好的性能。 展开更多
关键词 优化 分类 非洲秃鹫算法 多层感知器 前馈神经网络 自适应系数 收敛
在线阅读 下载PDF
水库群优化调度函数的人工神经网络方法研究 被引量:47
5
作者 胡铁松 万永华 冯尚友 《水科学进展》 EI CAS CSCD 1995年第1期53-60,共8页
提出了研究水库群优化调度函数的人工神经网络方法,并探讨了神经网络的训练参数、训练方法和训练样本的改变对网络训练和应用效果的影响。实例研究表明,模型及其算法是可行的、有效的。
关键词 水库群 水库调度 神经网络 最佳化
在线阅读 下载PDF
多层前向网络研究进展及若干问题 被引量:47
6
作者 董聪 郦正能 +1 位作者 夏人伟 何庆芝 《力学进展》 EI CSCD 北大核心 1995年第2期186-196,共11页
本文概述了多层前向网络研究的发展历史,对其中有代表性的若干成就进行了较为系统的介绍和评论,分析了当前研究工作中存在的一些问题,提出了解决这些问题的几种可行方案。在对多层前向网络的有效逼近机理进行深入剖析的基础上,提出... 本文概述了多层前向网络研究的发展历史,对其中有代表性的若干成就进行了较为系统的介绍和评论,分析了当前研究工作中存在的一些问题,提出了解决这些问题的几种可行方案。在对多层前向网络的有效逼近机理进行深入剖析的基础上,提出了合理的有限规模多层前向网络应当遵循的若干构造原则。 展开更多
关键词 多层前向网络 学习算法 神经网络
在线阅读 下载PDF
一种基于GRU的半监督网络流量异常检测方法 被引量:24
7
作者 李海涛 王瑞敏 +1 位作者 董卫宇 蒋烈辉 《计算机科学》 CSCD 北大核心 2023年第3期380-390,共11页
入侵检测系统(IDS)是在出现网络攻击时能够发出警报的检测系统,检测网络中未知的攻击是IDS面临的挑战。深度学习技术在网络流量异常检测方面发挥着重要的作用,但现有的方法大多具有较高的误报率且模型的训练大多使用有监督学习的方式。... 入侵检测系统(IDS)是在出现网络攻击时能够发出警报的检测系统,检测网络中未知的攻击是IDS面临的挑战。深度学习技术在网络流量异常检测方面发挥着重要的作用,但现有的方法大多具有较高的误报率且模型的训练大多使用有监督学习的方式。为此,提出了一种基于门循环单元网络(GRU)的半监督网络流量异常检测方法(SEMI-GRU)。该方法将多层双向门循环单元神经网络(MLB-GRU)和改进的前馈神经网络(FNN)相结合,采用数据过采样技术和半监督学习训练方式,应用二分类和多分类方式检验网络流量异常检测的效果,并使用NSL-KDD,UNSW-NB15和CIC-Bell-DNS-EXF-2021数据集进行验证。与经典机器学习模型和DNN,ANN等深度学习模型相比,SEMI-GRU方法在准确率、精确率、召回率、误报率和F1分数等指标上的表现均表现更优。在NSL-KDD二分类和多分类任务中,SEMI-GRU在F1分数指标上领先于其他方法,分别为93.08%和82.15%;在UNSW-NB15二分类和多分类任务中,SEMI-GRU在F1分数上的表现优于对比方法,分别为88.13%和75.24%;在CIC-Bell-DNS-EXF-2021轻文件攻击数据集二分类任务中,SEMI-GRU对所有测试数据均分类正确。 展开更多
关键词 入侵检测系统 半监督学习 多层双向门循环单元 前馈神经网络 NSL-KDD UNSW-NB15
在线阅读 下载PDF
多层神经网络BP算法的改进 被引量:13
8
作者 姚瑞波 孙国雄 汤崇熙 《东南大学学报(自然科学版)》 EI CAS CSCD 1996年第4期126-130,共5页
多层神经网络BP算法的改进姚瑞波孙国雄汤崇熙(东南大学机械工程系,南京210018)目前,前馈型多层神经网络模型已广泛应用于模式识别、语音识别、数据压缩等领域.BP算法作为其学习方式有效地解决了XOR、T-C匹配问题... 多层神经网络BP算法的改进姚瑞波孙国雄汤崇熙(东南大学机械工程系,南京210018)目前,前馈型多层神经网络模型已广泛应用于模式识别、语音识别、数据压缩等领域.BP算法作为其学习方式有效地解决了XOR、T-C匹配问题,但BP网络的学习过程是对一个高... 展开更多
关键词 多层神经网络 BP算法 神经网络 误差函数
在线阅读 下载PDF
统一电能质量控制器的建模与仿真 被引量:3
9
作者 任永峰 李含善 +1 位作者 李建林 许洪华 《电力系统及其自动化学报》 CSCD 北大核心 2009年第4期30-35,共6页
统一电能质量控制器可同时补偿电网畸变电压和抑制负载谐波电流。为此,构造了一种基于反向传播算法的三层前馈神经网络用来检测并联型有源电力滤波器的谐波电流,离线训练收敛后实现在线功能,对串联型有源电力滤波器谐波电压检测采用了... 统一电能质量控制器可同时补偿电网畸变电压和抑制负载谐波电流。为此,构造了一种基于反向传播算法的三层前馈神经网络用来检测并联型有源电力滤波器的谐波电流,离线训练收敛后实现在线功能,对串联型有源电力滤波器谐波电压检测采用了畸变电压参考量比较检测方法;建立了统一电能质量控制器的系统仿真模型,利用其对各种电能质量问题的补偿性能进行了仿真研究,并对补偿前后负载和电源电流/电压进行了频谱分析。研究结果表明,统一电能质量控制器集电压补偿、电流补偿于一体,可有效实现多重电能质量调节功能。 展开更多
关键词 统一电能质量控制器 多层前馈神经网络 建模 仿真 电能质量
在线阅读 下载PDF
基于改进多层前馈神经网络的电能质量扰动分类 被引量:8
10
作者 黄南天 徐殿国 刘晓胜 《电子测量与仪器学报》 CSCD 2009年第10期62-66,共5页
电能质量扰动分类是电能质量控制的重要工作之一,主要工作包括信号特征提取和分类器构造两个阶段。采用S变换与改进的多层前馈神经网络相结合,提出一种新的电能质量扰动分类方法。首先利用S变换对原始数据进行处理,提取具有代表性的4类... 电能质量扰动分类是电能质量控制的重要工作之一,主要工作包括信号特征提取和分类器构造两个阶段。采用S变换与改进的多层前馈神经网络相结合,提出一种新的电能质量扰动分类方法。首先利用S变换对原始数据进行处理,提取具有代表性的4类典型特征以表征不同种类的扰动类型的特性,之后使用拟牛顿法和自适应因子改进传统的多层前馈神经网络,将特征作为改进的多层前馈神经网络的输入向量,实现自动的分类识别。实验表明,新方法减少了噪声对分类准确率的影响,学习能力强,能够有效的识别电压暂降、电压瞬升、电压中断、暂态震荡、谐波等5种电能扰动。 展开更多
关键词 电能质量 电能质量扰动 多层前馈神经网络 S变换
在线阅读 下载PDF
基于多层前馈神经网络的并联型电能质量控制器 被引量:5
11
作者 任永峰 李含善 +2 位作者 胡洪涛 张国栋 王志国 《电工技术学报》 EI CSCD 北大核心 2007年第8期108-113,共6页
神经网络用于电力系统电能质量分析和控制是一个新研究领域。快速可靠地提取谐波分量决定着并联型电能质量控制器的整体性能,构造了一种和理论分析相一致的基于反向传播算法的三层前馈神经网络,离线训练收敛后可用来在线检测电力系统谐... 神经网络用于电力系统电能质量分析和控制是一个新研究领域。快速可靠地提取谐波分量决定着并联型电能质量控制器的整体性能,构造了一种和理论分析相一致的基于反向传播算法的三层前馈神经网络,离线训练收敛后可用来在线检测电力系统谐波电流。系统中逆变器补偿电流的产生对系统的补偿性能至关重要,提出了一种基于神经网络的逆变器瞬时电流PWM控制。并联型电能质量控制器投入系统后电流总畸变率由26.29%下降为5.25%。仿真实例表明,所提并联型电能质量控制器动态响应快,可改善电力系统电流波形畸变,提高电能质量。 展开更多
关键词 多层前馈神经网络 BP算法 谐波检测 并联型电能质量控制器 控制
在线阅读 下载PDF
基于多级神经网络结构的手写体汉字识别 被引量:19
12
作者 金连文 徐秉铮 《通信学报》 EI CSCD 北大核心 1997年第5期21-27,共7页
本文提出了一种用于手写体汉字识别的多级神经网络结构(Multi-stageNeuralNetworkArchitecture,MNNA)模型。在该模型中,我们将多个神经网络和不同的特征提取方法有机地集成在一起而构成一... 本文提出了一种用于手写体汉字识别的多级神经网络结构(Multi-stageNeuralNetworkArchitecture,MNNA)模型。在该模型中,我们将多个神经网络和不同的特征提取方法有机地集成在一起而构成一个完整的模式识别系统。我们讨论了设计MNNA的一般原理,并提出了一个基于多层前馈神经网络的三级结构的手写体汉字识别实验系统。三种不同的特征提取方法被应用于各级子系统之中。对100个汉字15000个样本的实验我们得到了99.34%的识别率,0.36%的拒识率和0.3%的误识率。 展开更多
关键词 多级 神经网络结构 手写体汉字识别 特征提取
在线阅读 下载PDF
热释放率计算和预测的神经网络方法 被引量:2
13
作者 邓超 吴龙标 +1 位作者 范维澄 谭营 《中国科学技术大学学报》 CAS CSCD 北大核心 1999年第2期175-180,共6页
基于多层前馈神经网络提出了火灾实验中不同材料热释放率的学习算法和预测技术.同时,将具有全局收敛特性的混合共轭梯度(MCG)算法应用于该问题中多层前馈神经网络的训练,克服了传统BP算法收敛速度慢,推广性能差的缺陷.文中... 基于多层前馈神经网络提出了火灾实验中不同材料热释放率的学习算法和预测技术.同时,将具有全局收敛特性的混合共轭梯度(MCG)算法应用于该问题中多层前馈神经网络的训练,克服了传统BP算法收敛速度慢,推广性能差的缺陷.文中对MCG方法进行了大量模拟,并将模拟结果与BP算法及带有动量项的BP算法作了全面比较。 展开更多
关键词 神经网络 混合共轭梯度 热释放率 火灾 火焰
在线阅读 下载PDF
改进的非线性最小二乘算法训练多层前馈神经网络 被引量:4
14
作者 孙圣和 黄远灿 《电子学报》 EI CAS CSCD 北大核心 1997年第1期124-127,共4页
本文通过在普通非线性最小二乘算法的准则函数中加一个正则项,推导出一种改进的非线性最小二乘算法,包括算法的批处理形式和递推形式.使用该算法的递推形式训练多层前馈神经网络能克服病态、减少计算量和内存占用量.文中给出的仿真... 本文通过在普通非线性最小二乘算法的准则函数中加一个正则项,推导出一种改进的非线性最小二乘算法,包括算法的批处理形式和递推形式.使用该算法的递推形式训练多层前馈神经网络能克服病态、减少计算量和内存占用量.文中给出的仿真结果说明该算法具有比常用的BP算法更好的收敛性能. 展开更多
关键词 非线性 最小二乘算法 准则函数 前馈神经网络
在线阅读 下载PDF
多种群并行进化神经网络的研究及应用 被引量:2
15
作者 林丽莉 冯天瑾 +1 位作者 周文晖 郑宏伟 《青岛海洋大学学报(自然科学版)》 CSCD 北大核心 2002年第2期312-318,共7页
提出一种新的多种群并行遗传算法 (NMPGA) ,并将其作为多层前馈神经网络(MFNNs)的学习算法 ,从而形成一类新的 MFNN模型——多种群并行进化神经网络(MPENNs)。首先 ,对一给定的网络结构 ,随机产生一初始权重的集合 ,这个集合实际上对应... 提出一种新的多种群并行遗传算法 (NMPGA) ,并将其作为多层前馈神经网络(MFNNs)的学习算法 ,从而形成一类新的 MFNN模型——多种群并行进化神经网络(MPENNs)。首先 ,对一给定的网络结构 ,随机产生一初始权重的集合 ,这个集合实际上对应着一组具有相同结构但不同权重的神经网络。然后 ,采用 NMPGA对 MFNNs的权重进行进化。最后 ,性能最好的网络被选作目标问题的解。在 NMPGA算法中 ,作者采用浮点数编码来克服传统二进制编码的精度不足问题 ,并设计了专门的杂交算子和变异算子来增强算法性能。实验结果表明 ,MPENNs能成功解决异或问题、三元奇偶问题及成品烟的感官质量评价问题。 展开更多
关键词 多层前馈神经网络 多种群并行遗传算法 多种群并行进化神经网络 浮点数编码 人工神经网络
在线阅读 下载PDF
基于粒子群优化神经网络的谐波检测 被引量:5
16
作者 刘伟 张龙水 范金玉 《大庆石油学院学报》 CAS 北大核心 2010年第1期94-97,共4页
根据谐波的傅里叶分析,把对谐波相位和幅值的检测转化为对谐波的正余弦分量幅值的检测.提出一种应用基于粒子群优化算法的多层前馈神经网络(MLFANN)实现谐波检测的方法,并构造一个3层MLFNN,以电网中最常见的3次、5次谐波为例,给出检测... 根据谐波的傅里叶分析,把对谐波相位和幅值的检测转化为对谐波的正余弦分量幅值的检测.提出一种应用基于粒子群优化算法的多层前馈神经网络(MLFANN)实现谐波检测的方法,并构造一个3层MLFNN,以电网中最常见的3次、5次谐波为例,给出检测的实现方法.MATLAB仿真结果表明,该谐波检测方法具有较强的泛化能力和较高的检测精度. 展开更多
关键词 人工神经网络 粒子群算法 谐波检测 多层前馈神经网络
在线阅读 下载PDF
常见遗传多层前馈神经网络实数编码的不合理性分析和改进 被引量:1
17
作者 莫鸿强 罗飞 +1 位作者 侯小梅 毛宗源 《控制理论与应用》 EI CAS CSCD 北大核心 2001年第2期281-284,共4页
对遗传多层前馈神经网络常见的实数编码中不适合于优化权值大小、不利于交叉算子发挥作用等问题 ,进行了理论分析 ,提出了“最小模式”等概念 ,并据此对编码方式做了改进 。
关键词 遗传算法 多层前馈神经网络 实数编码 不合理性
在线阅读 下载PDF
人工神经网络在资本市场预测中的应用 被引量:4
18
作者 曾勇 唐小我 《管理工程学报》 CSSCI 1999年第4期45-52,1,共9页
多层前向神经网络在非线性建模方面的独特优势已引起经济预测学界的重视。本文概要评述了多层前向网络在经济预测方面的优越性和局限性 ,并结合有关背景着重介绍了其在资本市场预测中三个方面的应用结果 。
关键词 人工神经网络 多层前向网络 资本市场 期权定价 有效市场假说 组合预测 金融资产变异度
在线阅读 下载PDF
多层前馈神经网络及其在开关变换器中的应用 被引量:1
19
作者 姜学东 周宇飞 +1 位作者 王诗兵 陈军宁 《电测与仪表》 北大核心 2008年第9期53-58,64,共7页
多层前馈神经网络具有多层结构、可鉴别神经元特性函数和误差反传算法等三个要素。本文从多层前馈神经网络的结构和原理出发,分析了多层前馈神经网络的非线性函数映射能力,以此为基础,从而可以实现其在系统辨识和非线性控制上的作用。另... 多层前馈神经网络具有多层结构、可鉴别神经元特性函数和误差反传算法等三个要素。本文从多层前馈神经网络的结构和原理出发,分析了多层前馈神经网络的非线性函数映射能力,以此为基础,从而可以实现其在系统辨识和非线性控制上的作用。另外,以Boost变换器的神经网络辨识器和控制器的设计为例,探讨了开关变换器的数学建模方法和多层前馈神经网络在其中的应用,使得各种线性和非线性控制方法均可以利用多层前馈神经网络来实现,并具有统一的设计和训练措施。 展开更多
关键词 多层前馈神经网络 系统辨识 非线性控制 开关变换器
在线阅读 下载PDF
改进蝴蝶算法的神经网络天线建模 被引量:3
20
作者 南敬昌 黄菊 张慧妹 《电子测量与仪器学报》 CSCD 北大核心 2023年第12期166-175,共10页
为提高天线建模效率,改变传统建模方法速度慢、效率低的问题,提出了一种用改进的蝴蝶算法(BOA)优化多层前馈神经网络(back propagation neural network,BPNN)的天线建模方法。首先,以多层前馈神经网络为基础网络,建立蝴蝶算法优化的BP... 为提高天线建模效率,改变传统建模方法速度慢、效率低的问题,提出了一种用改进的蝴蝶算法(BOA)优化多层前馈神经网络(back propagation neural network,BPNN)的天线建模方法。首先,以多层前馈神经网络为基础网络,建立蝴蝶算法优化的BP神经网络,解决BP神经网络预测精度低的问题。其次,在蝴蝶算法中融入天牛须算法(BAS),用天牛须算法替代蝴蝶算法的局部寻优过程,减小蝴蝶算法的空间复杂度、解决蝴蝶算法易陷入局部最小值的问题,创建改进的BOA-BP神经网络对天线进行精准建模。设计实例表明,该网络的预测精度达到了99.60%,相比于传统的BPNN和未改进蝴蝶算法优化的BPNN,预测S11的误差分别减少了47%和40.9%。此外,改进的BOA算法的运行时间相对于粒子群算法和遗传算法也分别减小了80.86%和82.79%,大大降低了网络运行的时间成本。综上,改进的BOA优化后的BPNN的建模精度和速度均得到了提高,验证了改进的蝴蝶算法作为一种新型神经网络优化策略的可行性和有效性。 展开更多
关键词 多层前馈神经网络 双陷波蜂窝结构分形超宽带天线 蝴蝶算法 天牛须算法 权值优化
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部