The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying t...The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.展开更多
To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method...To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isol...One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isolated control of intersections inefficient in this scene.Thus,it is significant to develop coordinated control of multiple intersection signals on the one-way roads.This paper proposes a signal coordination control method that is suitable for one-way arterial roads.This method uses the cooperation technology of the vehicle infrastructure to collect intersection traffic information and share information among the intersections.Adaptive signal control system is adopted for each intersection in the coordination system,and the green light time is adjusted in real time based on the number of vehicles in queue.The offset and clearance time can be calculated according to the real-time traffic volume.The proposed method was verified with simulation results by VISSIM traffic simulation software.The results compared with other methods show that the coordinated control method proposed in this paper can effectively reduce the average delay of vehicles on the arterial roads and improve the traffic efficiency.展开更多
Comparative analyses were conducted to compare the effects of the behavioral characteristics of the drivers of taxis and private cars on the capacity and safety of signalized intersections. Data were collected at sixt...Comparative analyses were conducted to compare the effects of the behavioral characteristics of the drivers of taxis and private cars on the capacity and safety of signalized intersections. Data were collected at sixteen signalized intersections in the Nanjing area in China. The risk-taking behaviors of the drivers of taxis and private cars were compared. The results suggest that 19.9% of taxi drivers have committed at least one of the identified risky behaviors, which is 2.37 times as high as that of the drivers of private cars(8.4%). The traffic conflicts technique was used to estimate the safety effects of taxis and private cars. The overall conflict rate for taxis is 21.4% higher than that for private cars, implying that taxis are more likely to be involved in conflicts. Almost all of the identified traffic conflicts can be attributed to certain levels of risk-taking behaviors committed by either taxi drivers or the drivers of private cars, and taxi drivers are more likely to be at fault in a conflict. Failure to yield to right-of-way and improper lane change is the leading causes of the conflicts in which taxis are at-fault. The research team further studied the effects of taxis on the queue discharge characteristics at signalized intersections. The results show that the presence of taxis significantly reduces both start-up lost time and saturation headways. The effects of taxis on saturation flow rates are dependent on the proportion of taxis in the discharge flow, and the saturation flow rates increase with the increase in the proportion of taxis. The adjustment factors for various proportions of taxis for different turning movements are then calculated to quantitatively evaluate the effects of taxis on the capacity of signalized intersections.展开更多
Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intel...Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intelligent vehicles for signalized at-grade intersections are indispensable.Vehicle-to-infrastructure communication technology offers unprecedented clues to reduce the delay at signalized intersections by innovative information-based control strategies.This paper proposes a new dynamic control strategy for signalized intersections with vehicle-to-signal information.The proposed strategy is called periodic vehicle holding(PVH)strategy while the traffic signal can provide information for the vehicles that are approaching an intersection.Under preliminary autonomous vehicle(PAV)environment,left-turning and through-moving vehicles will be sorted based on different information they receive.The paper shows how PVH reorganizes traffic to increase the capacity of an intersection without causing severe spillback to the upstream intersection.Results show that PVH can reduce the delay by approximately 15%at a signalized intersection under relatively high traffic demand.展开更多
The primary objective of this work is to explore how drivers react to flashing green at signalized intersections. Through video taping and data procession based on photogrammetry, the operating speeds of vehicles befo...The primary objective of this work is to explore how drivers react to flashing green at signalized intersections. Through video taping and data procession based on photogrammetry, the operating speeds of vehicles before and after the moment when flashing green started was compared using paired-samples T-test. The critical distances between go and stop decisions was defined through cumulative percentage curve. The boundary of dilemma zone was determined by comparing stop distance and travel distance.Amber-running violation was analyzed on the basis of the travel time to the stop line. And finally, a logistic model for stop and go decisions was constructed. The results shows that the stopping ratios of the first vehicles of west-bound and east-bound approaches are 41.3% and 39.8%, respectively; the amber-light running violation ratios of two approaches are 31.6% and 25.4%, respectively;the operating speed growth ratios of first vehicles selecting to cross intersection after the moment when flashing green started are26.7% and 17.7%, respectively; and the critical distances are 48 m and 46 m, respectively, which are close to 44 m, the boundary of dilemma zone. The developed decision models demonstrate that the probability of go decision is higher when the distance from the stop line is shorter or operating speed is higher. This indicates that flashing green is an effective way to enhance intersection safety,but it should work together with a strict enforcement. In addition, traffic signs near critical distance and reasonable speed limitation are also beneficial to the safety of intersections.展开更多
In many Chinese cities,motorized vehicles (M-vehicles) move slowly at intersections due to the interference of a large number of non-motorized vehicles (NM-vehicles).The slow movement makes a part of M-vehicles fa...In many Chinese cities,motorized vehicles (M-vehicles) move slowly at intersections due to the interference of a large number of non-motorized vehicles (NM-vehicles).The slow movement makes a part of M-vehicles fail to leave intersections timely after the traffic signal tums red,and thereby conflicts between vehicles from two directions occur.The phenomenon was analyzed graphically by using the cumulative vehicle curve.Delays in three cases were modeled and compared:NM-vehicle priorities and M-vehicle priorities with all-red intervals unable to release all vehicles,and longer all-red intervals ensuring release all vehicles.Marginal delays caused by two illegal behaviors that occasionally happened in mixed traffic intersections were also investigated.It is concluded that increasing the speed of M-vehicles leaving intersections and postponing the entering of NM-vehicles are the keys in mathematics,although they are uneasy in disordered mixed traffic intersections due to a dilemma between efficiency and orders in reality.The results could provide implications for the traffic management in the cities maintaining a large number of M-and NM-vehicles.展开更多
The intersection number, in (G), has been defined as the minimumcardinality of a set S which has n different subsets S_i such that each S_i can beassigned to the node v_i of G and nodes v_i, v_j are adjacent if and on...The intersection number, in (G), has been defined as the minimumcardinality of a set S which has n different subsets S_i such that each S_i can beassigned to the node v_i of G and nodes v_i, v_j are adjacent if and onlyif S_i∩S_j ≠0. We introduce the multiset intersection number min (G), defined similarly exceptthat multisets with elements in S may now be assigned to the nodes of G. Weprove that min (G) equals the smallest number ofcliques of G whose union is G.展开更多
Knowing the locations of nodes in wireless sensor networks (WSN) is essential for many applications. Nodes in a WSN can have multiple capabilities and exploiting one or more of the capabilities can help to solve the l...Knowing the locations of nodes in wireless sensor networks (WSN) is essential for many applications. Nodes in a WSN can have multiple capabilities and exploiting one or more of the capabilities can help to solve the localization problem. In this paper, we assume that each node in a WSN has the capability of distance measurement and present a location computation technique called linear intersection for node localization. We also propose an applied localization model using linear intersection and do some concerned experiments to estimate the location computation algorithm.展开更多
Finding the intersection of two subspaces is of great interest in many fields of signal processing. Over several decades,there have been numerous formulas discovered to solve this problem, among which the alternate pr...Finding the intersection of two subspaces is of great interest in many fields of signal processing. Over several decades,there have been numerous formulas discovered to solve this problem, among which the alternate projection method(APM) is the most popular one. However, APM suffers from high computational complexity, especially for real-time applications. Moreover, APM only gives the projection instead of the orthogonal basis of two given subspaces. This paper presents two alternate algorithms which have a closed form and reduced complexity as compared to the APM technique. Numerical simulations are conducted to verify the correctness and the effectiveness of the proposed methods.展开更多
The delay vehicles experience at signalized intersections is one of the most important indicators for measuring intersection performance. The interpretation of delay variability evolvement at intersections gives a com...The delay vehicles experience at signalized intersections is one of the most important indicators for measuring intersection performance. The interpretation of delay variability evolvement at intersections gives a comprehensive insight into arterial traffic operation. Thus, an analytical model is proposed to investigate delay variability at coordinated intersections. Two different flow rates are assumed for both effective red and green periods in cumulative curves, through which the effect of signal coordination is incorporated in delay estimation. Then, an analogy of Markov chain process is used to explore the mechanism of stochastic overflow queue at signalized intersections. Numerical case studies show that with the decrease of arrival proportions during green, the shape of delay distribution in both undersaturation and oversaturation cases shifts faster towards higher values, implying that the coordination effect between paired intersections has a great effect on the delay distribution. As for delay fluctuation range, favorable coordination is demonstrated to be able to weaken the variability of delay estimates especially for undersaturation conditions.展开更多
In this paper, a 'free surface intersection' algorithm is presented. This algorithm consists of two main stages: caculation of initial intersection points and tracing along an intersection curve. This procedur...In this paper, a 'free surface intersection' algorithm is presented. This algorithm consists of two main stages: caculation of initial intersection points and tracing along an intersection curve. This procedure is valid for any parametric bicubic splint surface patch with a'convex hull', or a patch lies within the conwx hull of the control points.展开更多
基金Project(52204164)supported by the National Natural Science Foundation of ChinaProject(2021QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,China。
文摘The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.
基金financially supported by the National Natural Science Foundation of China(Grant 52175099)the China Postdoctoral Science Foundation(Grant No.2020M671494)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z179)the Nanjing University of Science and Technology Independent Research Program(Grant No.30920021105)。
文摘To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
基金Project(61503048)supported by the National Natural Science Foundation of ChinaProjects(16C0050,16C0062)supported by Scientific Research Project of Hunan Provincial Department of Education,China
文摘One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isolated control of intersections inefficient in this scene.Thus,it is significant to develop coordinated control of multiple intersection signals on the one-way roads.This paper proposes a signal coordination control method that is suitable for one-way arterial roads.This method uses the cooperation technology of the vehicle infrastructure to collect intersection traffic information and share information among the intersections.Adaptive signal control system is adopted for each intersection in the coordination system,and the green light time is adjusted in real time based on the number of vehicles in queue.The offset and clearance time can be calculated according to the real-time traffic volume.The proposed method was verified with simulation results by VISSIM traffic simulation software.The results compared with other methods show that the coordinated control method proposed in this paper can effectively reduce the average delay of vehicles on the arterial roads and improve the traffic efficiency.
基金Projects(51322810,50908050)supported by the National Natural Science Foundation of China
文摘Comparative analyses were conducted to compare the effects of the behavioral characteristics of the drivers of taxis and private cars on the capacity and safety of signalized intersections. Data were collected at sixteen signalized intersections in the Nanjing area in China. The risk-taking behaviors of the drivers of taxis and private cars were compared. The results suggest that 19.9% of taxi drivers have committed at least one of the identified risky behaviors, which is 2.37 times as high as that of the drivers of private cars(8.4%). The traffic conflicts technique was used to estimate the safety effects of taxis and private cars. The overall conflict rate for taxis is 21.4% higher than that for private cars, implying that taxis are more likely to be involved in conflicts. Almost all of the identified traffic conflicts can be attributed to certain levels of risk-taking behaviors committed by either taxi drivers or the drivers of private cars, and taxi drivers are more likely to be at fault in a conflict. Failure to yield to right-of-way and improper lane change is the leading causes of the conflicts in which taxis are at-fault. The research team further studied the effects of taxis on the queue discharge characteristics at signalized intersections. The results show that the presence of taxis significantly reduces both start-up lost time and saturation headways. The effects of taxis on saturation flow rates are dependent on the proportion of taxis in the discharge flow, and the saturation flow rates increase with the increase in the proportion of taxis. The adjustment factors for various proportions of taxis for different turning movements are then calculated to quantitatively evaluate the effects of taxis on the capacity of signalized intersections.
文摘Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intelligent vehicles for signalized at-grade intersections are indispensable.Vehicle-to-infrastructure communication technology offers unprecedented clues to reduce the delay at signalized intersections by innovative information-based control strategies.This paper proposes a new dynamic control strategy for signalized intersections with vehicle-to-signal information.The proposed strategy is called periodic vehicle holding(PVH)strategy while the traffic signal can provide information for the vehicles that are approaching an intersection.Under preliminary autonomous vehicle(PAV)environment,left-turning and through-moving vehicles will be sorted based on different information they receive.The paper shows how PVH reorganizes traffic to increase the capacity of an intersection without causing severe spillback to the upstream intersection.Results show that PVH can reduce the delay by approximately 15%at a signalized intersection under relatively high traffic demand.
基金Project(51208451)supported by the National Natural Science Foundation of ChinaProject(10KJB580004)supported by the Natural Science Foundation for Colleges and Universities of Jiangsu Province,ChinaProject supported by the New Century Talents Project of Yangzhou University,China
文摘The primary objective of this work is to explore how drivers react to flashing green at signalized intersections. Through video taping and data procession based on photogrammetry, the operating speeds of vehicles before and after the moment when flashing green started was compared using paired-samples T-test. The critical distances between go and stop decisions was defined through cumulative percentage curve. The boundary of dilemma zone was determined by comparing stop distance and travel distance.Amber-running violation was analyzed on the basis of the travel time to the stop line. And finally, a logistic model for stop and go decisions was constructed. The results shows that the stopping ratios of the first vehicles of west-bound and east-bound approaches are 41.3% and 39.8%, respectively; the amber-light running violation ratios of two approaches are 31.6% and 25.4%, respectively;the operating speed growth ratios of first vehicles selecting to cross intersection after the moment when flashing green started are26.7% and 17.7%, respectively; and the critical distances are 48 m and 46 m, respectively, which are close to 44 m, the boundary of dilemma zone. The developed decision models demonstrate that the probability of go decision is higher when the distance from the stop line is shorter or operating speed is higher. This indicates that flashing green is an effective way to enhance intersection safety,but it should work together with a strict enforcement. In addition, traffic signs near critical distance and reasonable speed limitation are also beneficial to the safety of intersections.
基金Project(2012CB725403)supported by the National Key Research Program of ChinaProject(71131001)supported by the National Natural Science Foundation of ChinaProject(2012JBM064)supported by the Fundamental Research Funds for the Central Universities of China
文摘In many Chinese cities,motorized vehicles (M-vehicles) move slowly at intersections due to the interference of a large number of non-motorized vehicles (NM-vehicles).The slow movement makes a part of M-vehicles fail to leave intersections timely after the traffic signal tums red,and thereby conflicts between vehicles from two directions occur.The phenomenon was analyzed graphically by using the cumulative vehicle curve.Delays in three cases were modeled and compared:NM-vehicle priorities and M-vehicle priorities with all-red intervals unable to release all vehicles,and longer all-red intervals ensuring release all vehicles.Marginal delays caused by two illegal behaviors that occasionally happened in mixed traffic intersections were also investigated.It is concluded that increasing the speed of M-vehicles leaving intersections and postponing the entering of NM-vehicles are the keys in mathematics,although they are uneasy in disordered mixed traffic intersections due to a dilemma between efficiency and orders in reality.The results could provide implications for the traffic management in the cities maintaining a large number of M-and NM-vehicles.
文摘The intersection number, in (G), has been defined as the minimumcardinality of a set S which has n different subsets S_i such that each S_i can beassigned to the node v_i of G and nodes v_i, v_j are adjacent if and onlyif S_i∩S_j ≠0. We introduce the multiset intersection number min (G), defined similarly exceptthat multisets with elements in S may now be assigned to the nodes of G. Weprove that min (G) equals the smallest number ofcliques of G whose union is G.
基金Supported in part by the project of Science & Technology Department of Shanghai (05dz15004)
文摘Knowing the locations of nodes in wireless sensor networks (WSN) is essential for many applications. Nodes in a WSN can have multiple capabilities and exploiting one or more of the capabilities can help to solve the localization problem. In this paper, we assume that each node in a WSN has the capability of distance measurement and present a location computation technique called linear intersection for node localization. We also propose an applied localization model using linear intersection and do some concerned experiments to estimate the location computation algorithm.
基金supported by the National Natural Science Foundation of China(61501142 61871149)the project supported by Discipline Construction Guiding Foundation in Harbin Institute of Technology(Weihai)(WH2-0160107)
文摘Finding the intersection of two subspaces is of great interest in many fields of signal processing. Over several decades,there have been numerous formulas discovered to solve this problem, among which the alternate projection method(APM) is the most popular one. However, APM suffers from high computational complexity, especially for real-time applications. Moreover, APM only gives the projection instead of the orthogonal basis of two given subspaces. This paper presents two alternate algorithms which have a closed form and reduced complexity as compared to the APM technique. Numerical simulations are conducted to verify the correctness and the effectiveness of the proposed methods.
基金Project(51278455)supported by the National Natural Science Foundation of ChinaProject(2012M521175)supported by the National Science Foundation for Post-doctoral Scientists of ChinaProject(Bsh1202056)supported by and the Excellent Postdoctoral Science Foundation of Zhejiang Province,China
文摘The delay vehicles experience at signalized intersections is one of the most important indicators for measuring intersection performance. The interpretation of delay variability evolvement at intersections gives a comprehensive insight into arterial traffic operation. Thus, an analytical model is proposed to investigate delay variability at coordinated intersections. Two different flow rates are assumed for both effective red and green periods in cumulative curves, through which the effect of signal coordination is incorporated in delay estimation. Then, an analogy of Markov chain process is used to explore the mechanism of stochastic overflow queue at signalized intersections. Numerical case studies show that with the decrease of arrival proportions during green, the shape of delay distribution in both undersaturation and oversaturation cases shifts faster towards higher values, implying that the coordination effect between paired intersections has a great effect on the delay distribution. As for delay fluctuation range, favorable coordination is demonstrated to be able to weaken the variability of delay estimates especially for undersaturation conditions.
文摘In this paper, a 'free surface intersection' algorithm is presented. This algorithm consists of two main stages: caculation of initial intersection points and tracing along an intersection curve. This procedure is valid for any parametric bicubic splint surface patch with a'convex hull', or a patch lies within the conwx hull of the control points.
基金Supported by National Natural Science Foundation of China (60874063) and Innovation and Scientific Research Foundation of Graduate Student of Heilongjiang Province (YJSCX2012-263HLJ)