A method for modeling the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure is provided. For the given n jobs to be processed on m machines, it is assum...A method for modeling the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure is provided. For the given n jobs to be processed on m machines, it is assumed that the processing times and the due dates are nonnegative fuzzy numbers and all the weights are positive, crisp numbers. Based on credibility measure, three parallel machine scheduling problems and a goal-programming model are formulated. Feasible schedules are evaluated not only by their objective values but also by the credibility degree of satisfaction with their precedence constraints. The genetic algorithm is utilized to find the best solutions in a short period of time. An illustrative numerical example is also given. Simulation results show that the proposed models are effective, which can deal with the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure.展开更多
Two packet scheduling algorithms for rechargeable sensor networks are proposed based on the signal to interference plus noise ratio model.They allocate different transmission slots to conflicting packets and overcome ...Two packet scheduling algorithms for rechargeable sensor networks are proposed based on the signal to interference plus noise ratio model.They allocate different transmission slots to conflicting packets and overcome the challenges caused by the fact that the channel state changes quickly and is uncontrollable.The first algorithm proposes a prioritybased framework for packet scheduling in rechargeable sensor networks.Every packet is assigned a priority related to the transmission delay and the remaining energy of rechargeable batteries,and the packets with higher priority are scheduled first.The second algorithm mainly focuses on the energy efficiency of batteries.The priorities are related to the transmission distance of packets,and the packets with short transmission distance are scheduled first.The sensors are equipped with low-capacity rechargeable batteries,and the harvest-store-use model is used.We consider imperfect batteries.That is,the battery capacity is limited,and battery energy leaks over time.The energy harvesting rate,energy retention rate and transmission power are known.Extensive simulation results indicate that the battery capacity has little effect on the packet scheduling delay.Therefore,the algorithms proposed in this paper are very suitable for wireless sensor networks with low-capacity batteries.展开更多
According to random walk, in this paper, we propose a new traffic model for scheduling trains on a railway network. In the proposed method, using some iteration rules for walkers, the departure and the arrival times o...According to random walk, in this paper, we propose a new traffic model for scheduling trains on a railway network. In the proposed method, using some iteration rules for walkers, the departure and the arrival times of trains at each station are determined. We test the proposed method on an assumed railway network. The numerical simulations and the analytical results demonstrate that the proposed method provides an effective tool for scheduling trains. Some characteristic behaviours of train movement can be reproduced, such as train delay.展开更多
A new modern resource management method based on economic model is proposed. Giving mathematic description about economic model; analysis different resource scheduling methods based on deadline and budget constrained ...A new modern resource management method based on economic model is proposed. Giving mathematic description about economic model; analysis different resource scheduling methods based on deadline and budget constrained which present by Buyya, point out shortcoming of Buyya's schedule method. Considerate integrate factor of time and budget, by import a weight coefficient named a , puts forward a new resource schedule method named STPP based on economic models of Buyya. Contrast to old schedule strategy of Buyya through analysis and experiments, STPP policy is more flexible, and is easy to import other new QoS parameters.展开更多
This article presents a mathematical model for the medium-term scheduling of the operating states of electric power systems.The scheduling period is divided into several time intervals.The model can be used to determi...This article presents a mathematical model for the medium-term scheduling of the operating states of electric power systems.The scheduling period is divided into several time intervals.The model can be used to determine the equilibrium state in which each supplier earns maximum profit from supplying electricity to the wholesale market.We estimated the maximum value of public welfare,which indicates the total financial gains of suppliers and consumers,to determine the prices at the nodes of the power system.This was done by considering the balance constraints at the nodes of the power system and constraints on the allowable values of generation,power flows,and volumes of energy resources consumed over several time intervals.This problem belongs to the class of bi-level Stackelberg game-theoretic models with several leaders.The market equilibrium is modeled simultaneously in several intervals,given the multiplicity and duration of interactions.We considered two approaches for solving the multi-interval equilibrium state problem.The first approach involved directly solving a system of joint optimality conditions for electricity suppliers and consumers.The second approach involved iterative searches until the equilibrium state was reached.This article presents the results of medium-term scheduling using a case study of a simplified real-world power system.展开更多
The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number i...The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number in millimeter wave system,the multi-task deep residual shrinkage network(MTDRSN) and transfer learning-based convolutional neural network(TCNN), namely MDTCNet, are proposed. The sampling covariance matrix based on the received signal is used as the input to the proposed network. A DRSN-based multi-task classifications model is first introduced to estimate signal sources number and multipath number simultaneously. Then, the DoAs with multi-signal and multipath are estimated by the regression model. The proposed CNN is applied for DoAs estimation with the predicted number of signal sources and paths. Furthermore, the modelbased transfer learning is also introduced into the regression model. The TCNN inherits the partial network parameters of the already formed optimization model obtained by the CNN. A series of experimental results show that the MDTCNet-based DoAs estimation method can accurately predict the signal sources number and multipath number under a range of signal-to-noise ratios. Remarkably, the proposed method achieves the lower root mean square error compared with some existing deep learning-based and traditional methods.展开更多
The MAC layer in IEEE802.16 is designed to differentiate service among traffic categories with different multimedia requirements.In this paper,a scheduling algorithm at MAC layer for multiple connections with diverse ...The MAC layer in IEEE802.16 is designed to differentiate service among traffic categories with different multimedia requirements.In this paper,a scheduling algorithm at MAC layer for multiple connections with diverse QoS requirements is proposed.As for this algorithm,each connection is assigned a priority,which is updated dynamically based on its service status concluding queue characteristic and channel state.A connection with the highest priority is scheduled each time.Analytical model is developed by assuming a Finite State Markov Chain(FSMC)channel model.Simulation results show that the proposed scheduling algorithm can improve the performance of mean waiting time and throughput in broadband wireless networks.展开更多
为研究异构多核片上系统(multi-processor system on chip,MPSoC)在密集并行计算任务中的潜力,文章设计并实现了一种适用于粗粒度数据特征、面向任务级并行应用的异构多核系统动态调度协处理器,采用了片上缓存、任务输出的多级写回管理...为研究异构多核片上系统(multi-processor system on chip,MPSoC)在密集并行计算任务中的潜力,文章设计并实现了一种适用于粗粒度数据特征、面向任务级并行应用的异构多核系统动态调度协处理器,采用了片上缓存、任务输出的多级写回管理、任务自动映射、通讯任务乱序执行等机制。实验结果表明,该动态调度协处理器不仅能够实现任务级乱序执行等基本设计目标,还具有极低的调度开销,相较于基于动态记分牌算法的调度器,运行多个子孔径距离压缩算法的时间降低达17.13%。研究结果证明文章设计的动态调度协处理器能够有效优化目标场景下的任务调度效果。展开更多
基金Sponsored by the Basic Research Foundation of Beijing Institute of Technology (BIT-UBF-200508G4212)
文摘A method for modeling the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure is provided. For the given n jobs to be processed on m machines, it is assumed that the processing times and the due dates are nonnegative fuzzy numbers and all the weights are positive, crisp numbers. Based on credibility measure, three parallel machine scheduling problems and a goal-programming model are formulated. Feasible schedules are evaluated not only by their objective values but also by the credibility degree of satisfaction with their precedence constraints. The genetic algorithm is utilized to find the best solutions in a short period of time. An illustrative numerical example is also given. Simulation results show that the proposed models are effective, which can deal with the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure.
基金supported by the National Natural Science Foundation of China under Grants 62272256,61832012,and 61771289Major Program of Shandong Provincial Natural Science Foundation for the Fundamental Research under Grant ZR2022ZD03+1 种基金the Pilot Project for Integrated Innovation of Science,Education and Industry of Qilu University of Technology(Shandong Academy of Sciences)under Grant 2022XD001Shandong Province Fundamental Research under Grant ZR201906140028。
文摘Two packet scheduling algorithms for rechargeable sensor networks are proposed based on the signal to interference plus noise ratio model.They allocate different transmission slots to conflicting packets and overcome the challenges caused by the fact that the channel state changes quickly and is uncontrollable.The first algorithm proposes a prioritybased framework for packet scheduling in rechargeable sensor networks.Every packet is assigned a priority related to the transmission delay and the remaining energy of rechargeable batteries,and the packets with higher priority are scheduled first.The second algorithm mainly focuses on the energy efficiency of batteries.The priorities are related to the transmission distance of packets,and the packets with short transmission distance are scheduled first.The sensors are equipped with low-capacity rechargeable batteries,and the harvest-store-use model is used.We consider imperfect batteries.That is,the battery capacity is limited,and battery energy leaks over time.The energy harvesting rate,energy retention rate and transmission power are known.Extensive simulation results indicate that the battery capacity has little effect on the packet scheduling delay.Therefore,the algorithms proposed in this paper are very suitable for wireless sensor networks with low-capacity batteries.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60634010 and 60776829)the New Century Excellent Talents in University (Grant No. NCET-06-0074)the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University (Grant No. RCS2008ZZ001)
文摘According to random walk, in this paper, we propose a new traffic model for scheduling trains on a railway network. In the proposed method, using some iteration rules for walkers, the departure and the arrival times of trains at each station are determined. We test the proposed method on an assumed railway network. The numerical simulations and the analytical results demonstrate that the proposed method provides an effective tool for scheduling trains. Some characteristic behaviours of train movement can be reproduced, such as train delay.
文摘A new modern resource management method based on economic model is proposed. Giving mathematic description about economic model; analysis different resource scheduling methods based on deadline and budget constrained which present by Buyya, point out shortcoming of Buyya's schedule method. Considerate integrate factor of time and budget, by import a weight coefficient named a , puts forward a new resource schedule method named STPP based on economic models of Buyya. Contrast to old schedule strategy of Buyya through analysis and experiments, STPP policy is more flexible, and is easy to import other new QoS parameters.
基金the State Assignment Project (No. FWEU-754 2021-0001) of the Basic Research Program of the Russian Federation 2021-2030
文摘This article presents a mathematical model for the medium-term scheduling of the operating states of electric power systems.The scheduling period is divided into several time intervals.The model can be used to determine the equilibrium state in which each supplier earns maximum profit from supplying electricity to the wholesale market.We estimated the maximum value of public welfare,which indicates the total financial gains of suppliers and consumers,to determine the prices at the nodes of the power system.This was done by considering the balance constraints at the nodes of the power system and constraints on the allowable values of generation,power flows,and volumes of energy resources consumed over several time intervals.This problem belongs to the class of bi-level Stackelberg game-theoretic models with several leaders.The market equilibrium is modeled simultaneously in several intervals,given the multiplicity and duration of interactions.We considered two approaches for solving the multi-interval equilibrium state problem.The first approach involved directly solving a system of joint optimality conditions for electricity suppliers and consumers.The second approach involved iterative searches until the equilibrium state was reached.This article presents the results of medium-term scheduling using a case study of a simplified real-world power system.
基金funded by Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number in millimeter wave system,the multi-task deep residual shrinkage network(MTDRSN) and transfer learning-based convolutional neural network(TCNN), namely MDTCNet, are proposed. The sampling covariance matrix based on the received signal is used as the input to the proposed network. A DRSN-based multi-task classifications model is first introduced to estimate signal sources number and multipath number simultaneously. Then, the DoAs with multi-signal and multipath are estimated by the regression model. The proposed CNN is applied for DoAs estimation with the predicted number of signal sources and paths. Furthermore, the modelbased transfer learning is also introduced into the regression model. The TCNN inherits the partial network parameters of the already formed optimization model obtained by the CNN. A series of experimental results show that the MDTCNet-based DoAs estimation method can accurately predict the signal sources number and multipath number under a range of signal-to-noise ratios. Remarkably, the proposed method achieves the lower root mean square error compared with some existing deep learning-based and traditional methods.
文摘The MAC layer in IEEE802.16 is designed to differentiate service among traffic categories with different multimedia requirements.In this paper,a scheduling algorithm at MAC layer for multiple connections with diverse QoS requirements is proposed.As for this algorithm,each connection is assigned a priority,which is updated dynamically based on its service status concluding queue characteristic and channel state.A connection with the highest priority is scheduled each time.Analytical model is developed by assuming a Finite State Markov Chain(FSMC)channel model.Simulation results show that the proposed scheduling algorithm can improve the performance of mean waiting time and throughput in broadband wireless networks.
文摘为研究异构多核片上系统(multi-processor system on chip,MPSoC)在密集并行计算任务中的潜力,文章设计并实现了一种适用于粗粒度数据特征、面向任务级并行应用的异构多核系统动态调度协处理器,采用了片上缓存、任务输出的多级写回管理、任务自动映射、通讯任务乱序执行等机制。实验结果表明,该动态调度协处理器不仅能够实现任务级乱序执行等基本设计目标,还具有极低的调度开销,相较于基于动态记分牌算法的调度器,运行多个子孔径距离压缩算法的时间降低达17.13%。研究结果证明文章设计的动态调度协处理器能够有效优化目标场景下的任务调度效果。