期刊文献+
共找到783篇文章
< 1 2 40 >
每页显示 20 50 100
Dynamic cluster member selection method for multi-target tracking in wireless sensor network 被引量:8
1
作者 蔡自兴 文莎 刘丽珏 《Journal of Central South University》 SCIE EI CAS 2014年第2期636-645,共10页
Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a s... Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection. 展开更多
关键词 wireless sensor networks multi-target tracking collaborative task allocation dynamic cluster comprehensive performance index function
在线阅读 下载PDF
Multi-target tracking algorithm based on PHD filter against multi-range-false-target jamming 被引量:12
2
作者 TIAN Chen PEI Yang +1 位作者 HOU Peng ZHAO Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期859-870,共12页
Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) met... Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter. 展开更多
关键词 multi-range-false-target(MRFT)jamming multi-target tracking(MTT) probability hypothesis density(PHD) target amplitude feature gating strategy
在线阅读 下载PDF
Effective method for tracking multiple objects in real-time visual surveillance systems 被引量:2
3
作者 Wang Yaonan Wan Qin Yu Hongshan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第6期1167-1178,共12页
An object model-based tracking method is useful for tracking multiple objects, but the main difficulties are modeling objects reliably and tracking objects via models in successive frames. An effective tracking method... An object model-based tracking method is useful for tracking multiple objects, but the main difficulties are modeling objects reliably and tracking objects via models in successive frames. An effective tracking method using the object models is proposed to track multiple objects in a real-time visual surveillance system. Firstly, for detecting objects, an adaptive kernel density estimation method is utilized, which uses an adaptive bandwidth and features combining colour and gradient. Secondly, some models of objects are built for describing motion, shape and colour features. Then, a matching matrix is formed to analyze tracking situations. If objects are tracked under occlusions, the optimal "visual" object is found to represent the occluded object, and the posterior probability of pixel is used to determine which pixel is utilized for updating object models. Extensive experiments show that this method improves the accuracy and validity of tracking objects even under occlusions and is used in real-time visual surveillance systems. 展开更多
关键词 visual surveillance multiple object tracking object model matching matrix.
在线阅读 下载PDF
Sensor planning method for visual tracking in 3D camera networks 被引量:1
4
作者 Anlong Ming Xin Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第6期1107-1116,共10页
Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks a... Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks are usually simplified as 2D points in previous literature. However in actual application scenes, not only cameras are always heterogeneous with different height and action radiuses, but also the observed objects are with 3D features(i.e., height). This paper presents a sensor planning formulation addressing the efficiency enhancement of visual tracking in 3D heterogeneous camera networks that track and detect people traversing a region. The problem of sensor planning consists of three issues:(i) how to model the 3D heterogeneous cameras;(ii) how to rank the visibility, which ensures that the object of interest is visible in a camera's field of view;(iii) how to reconfigure the 3D viewing orientations of the cameras. This paper studies the geometric properties of 3D heterogeneous camera networks and addresses an evaluation formulation to rank the visibility of observed objects. Then a sensor planning method is proposed to improve the efficiency of visual tracking. Finally, the numerical results show that the proposed method can improve the tracking performance of the system compared to the conventional strategies. 展开更多
关键词 camera model sensor planning camera network visual tracking
在线阅读 下载PDF
Adaptive resource management for multi-target tracking in co-located MIMO radar based on time-space joint allocation 被引量:2
5
作者 SU Yang CHENG Ting +2 位作者 HE Zishu LI Xi LU Yanxi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期916-927,共12页
Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom deg... Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar. 展开更多
关键词 co-located multiple-input multiple-output(MIMO)radar adaptive resource management multi-target tracking sub-array division time-space joint allocation
在线阅读 下载PDF
Joint target assignment and power allocation in the netted C-MIMO radar when tracking multi-targets in the presence of self-defense blanket jamming 被引量:1
6
作者 Zhengjie Li Junwei Xie +1 位作者 Haowei Zhang Jiahao Xie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期414-427,共14页
The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In t... The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case. 展开更多
关键词 Netted radar system MIMO Target assignment Power allocation multi-targets tracking Self-defense blanket jamming
在线阅读 下载PDF
A content-aware correlation filter with multi-feature fusion for RGB-T tracking
7
作者 FENG Zihang YAN Liping +2 位作者 BAI Jinglan XIA Yuanqing XIAO Bo 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1357-1371,共15页
In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,th... In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,the high-level image information and the modality-specific features have not been sufficiently studied.The proposed correlation filter uses the fused saliency content map to improve filter training and extracts different features of modalities.The fused content map is intro-duced into the spatial regularization term of correlation filter to highlight the training samples in the content region.Furthermore,the fused content map can avoid the incompleteness of the con-tent region caused by challenging situations.Additionally,differ-ent features are extracted according to the modality characteris-tics and are fused by the designed response-level fusion stra-tegy.The alternating direction method of multipliers(ADMM)algorithm is used to solve the tracker training efficiently.Experi-ments on the large-scale benchmark datasets show the effec-tiveness of the proposed tracker compared to the state-of-the-art traditional trackers and the deep learning based trackers. 展开更多
关键词 visual tracking RED green blue(RGB)and thermal infrared(TIR)tracking correlation filter content perception multi-feature fusion
在线阅读 下载PDF
Kernel density estimation and marginalized-particle based probability hypothesis density filter for multi-target tracking 被引量:3
8
作者 张路平 王鲁平 +1 位作者 李飚 赵明 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期956-965,共10页
In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis ... In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD. 展开更多
关键词 particle filter with probability hypothesis density marginalized particle filter meanshift kernel density estimation multi-target tracking
在线阅读 下载PDF
Online Adaptive Fast Multipose Face Tracking Based on Visual Cue Selection
9
作者 YANG Tao LI Zi-Qing +3 位作者 PAN Quan LI Jing ZHAO Chun-Hui CHENG Yong-Mei 《自动化学报》 EI CSCD 北大核心 2008年第1期14-20,共7页
This paper presents a system that is able to reliably track multiple faces under varying poses(tilted and rotated)in real time.The system consists of two interactive modules.The first module performs the detection of ... This paper presents a system that is able to reliably track multiple faces under varying poses(tilted and rotated)in real time.The system consists of two interactive modules.The first module performs the detection of the face that is subject to rotation. The second module carries out online learning-based face tracking.A mechanism that switches between the two modules is embedded into the system to automatically decide the best strategy for reliable tracking.The mechanism enables a smooth transit between the detection and tracking modules when one of them gives either nil or unreliable results.Extensive experiments demonstrate that the system can reliably carry out real time tracking of multiple faces in a complex background under different conditions such as out-of-plane rotation,tilting,fast nonlinear motion,partial occlusion,large scale changes,and camera motion.Moreover,it runs at a high speed of 10~12 frames per second(fps)for an image of 320×240. 展开更多
关键词 视觉提示选择 面容跟踪系统 绝对移动 位置 实时跟踪
在线阅读 下载PDF
Adaptive multi-feature tracking in particle swarm optimization based particle filter framework 被引量:7
10
作者 Miaohui Zhang Ming Xin Jie Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期775-783,共9页
This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state t... This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance. 展开更多
关键词 particle filter particle swarm optimization adaptive weight adjustment visual tracking
在线阅读 下载PDF
Modified joint probabilistic data association with classification-aided for multitarget tracking 被引量:9
11
作者 Ba Hongxin Cao Lei +1 位作者 He Xinyi Cheng Qun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期434-439,共6页
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are... Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid. 展开更多
关键词 multi-target tracking data association joint probabilistic data association classification information track coalescence maneuvering target.
在线阅读 下载PDF
Augmented input estimation in multiple maneuvering target tracking 被引量:1
12
作者 HADAEGH Mahmoudreza KHALOOZADEH Hamid BEHESHTI Mohammadtaghi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期841-851,共11页
This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observa... This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT. 展开更多
关键词 multi-target tracking (MTT) MARKOV chain Monte-Carlodata ASSOCIATION (MCMCDA) DATA ASSOCIATION (DA) augmentedinput estimation (AIE)
在线阅读 下载PDF
复杂光照环境下的视觉惯性定位方法 被引量:1
13
作者 程向红 钟志伟 +2 位作者 刘丰宇 吴建峰 吴昕怡 《中国惯性技术学报》 北大核心 2025年第3期229-238,共10页
光流法假设条件严格,对光照条件、载体机动敏感。为了提高光流法特征跟踪和匹配的稳定性,提高视觉惯性定位精度,提出了一种基于精细预积分和自适应特征权重的视觉惯性定位方法。首先,在传统预积分模型的基础上,考虑惯性元件的比例因子... 光流法假设条件严格,对光照条件、载体机动敏感。为了提高光流法特征跟踪和匹配的稳定性,提高视觉惯性定位精度,提出了一种基于精细预积分和自适应特征权重的视觉惯性定位方法。首先,在传统预积分模型的基础上,考虑惯性元件的比例因子和非正交误差,通过精细预积分得到关键帧之间的位姿变化量;其次,用其辅助光流金字塔的跟踪迭代,减少匹配搜索时间并减少特征点误匹配概率。最后,基于特征匹配置信度的差异,利用所设计的特征权重在滑窗内自适应地融合多传感器信息。实验结果表明:在EuRoC数据集中,所提方法能够有效剔除特征错误匹配;在实际实验中,相较于R-VIO、MSCKF和VINS-Mono算法,所提方法的绝对轨迹均方根误差分别平均减小了68.39%、59.06%和29.89%,证明其在各种环境下均具有较强的鲁棒性。 展开更多
关键词 视觉/惯性 光流跟踪 自适应权重 传感器融合
在线阅读 下载PDF
视频小卫星目标跟踪视野分区防脱靶控制
14
作者 范才智 钟子凯 +1 位作者 王猛猛 杨跃能 《国防科技大学学报》 北大核心 2025年第3期98-108,共11页
针对视频小卫星与观测目标存在较大初始相对姿态偏差和角速度,目标容易偏离相机视场造成脱靶的问题,设计了一种视频小卫星目标跟踪视野分区防脱靶控制方法,该方法将星载相机矩形成像视野按照内切圆划分为内外两部分,内切圆内部和外部分... 针对视频小卫星与观测目标存在较大初始相对姿态偏差和角速度,目标容易偏离相机视场造成脱靶的问题,设计了一种视频小卫星目标跟踪视野分区防脱靶控制方法,该方法将星载相机矩形成像视野按照内切圆划分为内外两部分,内切圆内部和外部分别基于势函数和拟欧拉旋转法设计跟踪控制器,并利用Barbalat引理证明两个区域控制律的渐近稳定性,同时在理论上证明了目标进入视野内切圆区域后,在基于势函数的控制器作用下可以确保不脱靶。通过控制器对比仿真,结果表明拟欧拉旋转法相比于比例-微分(proportional-derivative,PD)控制具有更强的抑制目标偏离视场能力,结合拟欧拉旋转法和势函数法的视野分区控制与全视场的拟欧拉旋转法相比,能够有效实现对较快速机动目标的防脱靶控制,从而实现连续跟踪观测。 展开更多
关键词 视频小卫星 势函数 拟欧拉旋转 视觉跟踪 防脱靶
在线阅读 下载PDF
孤独症儿童图片故事叙说中的视觉加工研究
15
作者 马博森 李发睿 《山东外语教学》 北大核心 2025年第1期42-52,共11页
本研究借助图片故事叙说眼动任务,通过对比分析方法,考察6-8岁高功能孤独症儿童同与之匹配的正常发展儿童在叙说图片故事时的视觉加工特征,并探讨视觉加工特征与叙说话语特征之间的内在联系。结果显示:(1)孤独症儿童在主要区域的注视时... 本研究借助图片故事叙说眼动任务,通过对比分析方法,考察6-8岁高功能孤独症儿童同与之匹配的正常发展儿童在叙说图片故事时的视觉加工特征,并探讨视觉加工特征与叙说话语特征之间的内在联系。结果显示:(1)孤独症儿童在主要区域的注视时长和注视次数均低于正常发展儿童,在次要区域的注视时长和注视次数均高于正常发展儿童,且两区域的注视次数有显著性差异。(2)孤独症儿童叙说话语中的名词使用频率显著高于正常发展儿童,但代词却显著低于正常发展儿童,两组儿童叙说话语中的名词和代词使用频率与其主要区域和次要区域的注视偏好具有显著相关性。(3)两组儿童的总体注视指标和眼跳指标没有显著差异,在社会性区域和非社会性区域的注视指标没有显著差异。本研究结论支持弱中央统合理论假设,发现孤独症儿童在图片故事叙说中的视觉加工以及所产出的叙说话语中均表现出整体统合能力不足的缺陷,并且其叙说话语特征可能受视觉加工偏好的影响,两者之间存在显著相关性,但研究未发现孤独症儿童在视觉加工中存在局部加工偏好和社会注意缺陷问题,这可能与任务类型及诱发材料设计有关。 展开更多
关键词 孤独症儿童 图片故事叙说 视觉加工 眼动
在线阅读 下载PDF
时空特征强化与感知的视觉目标跟踪方法
16
作者 郭虎升 刘正琪 +1 位作者 刘艳杰 王文剑 《陕西师范大学学报(自然科学版)》 北大核心 2025年第1期60-70,共11页
多数基于Transformer的目标跟踪模型提取的目标局部空间特征信息有限且时间特征利用不足,显著影响了目标跟踪模型在处理目标遮挡、形变或尺度变化等复杂场景下的性能。为此,提出一种时空特征强化与感知的视觉目标跟踪方法(visual object... 多数基于Transformer的目标跟踪模型提取的目标局部空间特征信息有限且时间特征利用不足,显著影响了目标跟踪模型在处理目标遮挡、形变或尺度变化等复杂场景下的性能。为此,提出一种时空特征强化与感知的视觉目标跟踪方法(visual object tracking method with spatial-temporal feature enhancement and perception,STFEP)。一方面,该方法使用Transformer进行搜索区域与时间上下文特征的提取与融合,以得到全局特征信息,通过设计的局部卷积神经网络,提取目标的局部特征信息,并与目标的全局特征信息相关联,进一步强化目标的特征表示。另一方面,提出了时空特征感知机制,对不同时刻的特征信息进行可靠性和必要性分析,构建动态模板以感知更丰富的时空信息,使模型适应目标及场景的复杂变化。在TrackingNet、GOT-10k、LaSOT、UAV123多个数据集上的实验结果表明,研究所提方法能够准确鲁棒的对目标进行跟踪,并在GOT-10k数据集上取得了最优的结果,AO、SR 0.5以及SR 0.75分别达到了73.7%、83.8%、70.6%。 展开更多
关键词 视觉目标跟踪 时空特征强化 全局-局部信息关联 时空特征感知 动态模板
在线阅读 下载PDF
基于视觉实时引导的煤矸石精准跟踪方法
17
作者 曹现刚 王虎生 +3 位作者 王鹏 吴旭东 向敬芳 李虎 《煤炭科学技术》 北大核心 2025年第1期356-364,共9页
现有煤矸分拣机器人在分拣煤矸石时存在误抓取、空抓、碰撞等问题,其主要原因是煤矸石随输送带运输过程中存在打滑、跑偏等现象,依靠带速的煤矸石跟踪方法难以实时获取其精准位姿信息,导致机械臂抓取时出现较大误差,影响机器人分拣效率... 现有煤矸分拣机器人在分拣煤矸石时存在误抓取、空抓、碰撞等问题,其主要原因是煤矸石随输送带运输过程中存在打滑、跑偏等现象,依靠带速的煤矸石跟踪方法难以实时获取其精准位姿信息,导致机械臂抓取时出现较大误差,影响机器人分拣效率。针对该问题,提出一种基于视觉实时引导的煤矸石跟踪方法,即通过相机获取煤矸石实时位姿信息,引导机械臂调整动作完成煤矸石跟踪抓取。首先,通过视觉识别模块获取待抓取目标初始位姿与跟踪模板,由控制系统进行策略分配,将煤矸石分配给对应机械臂进行抓取;当目标煤矸石进入机械臂抓取工作区后,由基于孪生网络构建的单目标跟踪模型获取煤矸石实时位姿信息,并实时调整机械臂动作,完成抓取。最后,对不同带速下的煤矸石进行视觉跟踪实验,并构建煤矸分拣机器人仿真系统完成不同程度打滑、跑偏工况的煤矸石跟踪轨迹规划仿真。仿真实验结果表明,构建的煤矸石跟踪模型跟踪准确率为96.9%,跟踪速度为39 FPS,满足实时引导的需求。当存在不同程度打滑、跑偏时,基于视觉实时引导的机械臂抓取误差均降低至1 mm以内。相较于基于带速的跟踪方法,可有效消除运输过程中由于输送带打滑、跑偏等带来的累积误差,提高系统实时响应能力,进一步提升煤矸石分拣效率。 展开更多
关键词 视觉引导 目标跟踪 孪生网络 煤矸石分拣 轨迹规划
在线阅读 下载PDF
中外经典座椅视觉偏好差异研究
18
作者 赵立杉 张茜玥 张凯旋 《家具与室内装饰》 北大核心 2025年第7期8-14,共7页
为探索Z世代专业用户群体与非专业用户群体对中外经典座椅的视觉偏好差异,总结归纳其视觉偏好,并从中获得设计启示与指导方法。首先收集整理中外设计史上的经典座椅,将样本进行分类、灰度处理及拉丁方形式排列;其次采用语义感知差异法,... 为探索Z世代专业用户群体与非专业用户群体对中外经典座椅的视觉偏好差异,总结归纳其视觉偏好,并从中获得设计启示与指导方法。首先收集整理中外设计史上的经典座椅,将样本进行分类、灰度处理及拉丁方形式排列;其次采用语义感知差异法,对不同背景用户进行语义差异法评价调查,运用眼动追踪技术获取用户眼动指标数据,对比不同背景用户的语义感知与视觉偏好差异。通过实验分析发现,不同背景用户均对有靠背有扶手类型的座椅视觉偏好均值较高;有靠背无扶手类型的座椅在语义评价及视觉关注度均值上均存在显著性。本研究通过眼动实验弥补了传统主观评价的不足,增加定量数据支撑,研究表明不同背景用户对于座椅外观造型的语义感知度与视觉偏好具有相关性,为座椅造型设计领域提供了科学的数据支持与理论指导。 展开更多
关键词 眼动实验 Z世代 经典座椅 语义感知 视觉偏好差异
在线阅读 下载PDF
面向无人机视觉制导的自适应目标跟踪方法 被引量:1
19
作者 杨绪祺 谭启凡 +1 位作者 苏航 谭浩 《兵工学报》 北大核心 2025年第2期65-75,共11页
为解决无人机制导中跟踪目标尺度变化大、外形变化大、推理速度慢、数据集缺失的问题,提出了一种面向无人机视觉制导的自适应目标跟踪方法。自适应搜索区域机制通过分析制导过程调整搜索区域解决尺度变化快的问题;自适应模板更新机制通... 为解决无人机制导中跟踪目标尺度变化大、外形变化大、推理速度慢、数据集缺失的问题,提出了一种面向无人机视觉制导的自适应目标跟踪方法。自适应搜索区域机制通过分析制导过程调整搜索区域解决尺度变化快的问题;自适应模板更新机制通过更新模板特征解决外形变化大的问题。此外,该方法在骨干网络引入FasterNet Block,在跟踪头引入无锚机制,减少推理的时间。最后,构建并公开了一个包含12个制导视频的测试数据集Guidance UAV以评估算法在视觉制导中的性能。实验结果表明,该方法不仅在通用无人机跟踪数据集UAV123上适用,而且在Guidance UAV上实现了最先进的性能,同时在机载设备Jetson Xavier NX上保持15 f/s的速度。室内无人机制导打击实验证明了算法的有效性。 展开更多
关键词 视觉制导 目标跟踪 无人机 自适应 模板更新 搜索区域
在线阅读 下载PDF
基于时空Transformer的视觉目标跟踪算法 被引量:1
20
作者 武晓军 陈怡丹 +2 位作者 冯丽萍 宋长伟 何德清 《传感器与微系统》 北大核心 2025年第3期152-155,共4页
视觉目标跟踪中,由于目标移动速度不同,连续帧对时空邻域的贡献程度也不同。为学习视频帧对邻域信息的贡献,结合自注意力机制学习不同帧的权重大小,提出了一种基于时空Transformer的视觉目标跟踪方法。该算法主要通过关联多帧特征,并在... 视觉目标跟踪中,由于目标移动速度不同,连续帧对时空邻域的贡献程度也不同。为学习视频帧对邻域信息的贡献,结合自注意力机制学习不同帧的权重大小,提出了一种基于时空Transformer的视觉目标跟踪方法。该算法主要通过关联多帧特征,并在时域上进行信息聚合。首先,将图像通过空间Transformer编码器(STE)对空间特征进行编码。然后,通过时空Transformer解码器(STD)模块在时间维度上聚合帧间信息,以捕获时间和空间的全局上下文信息。最后,在LaSOT、GOT—10k等主流数据集进行测评。实验结果表明:算法在精度、成功率及其他评价指标上取得了一定程度的提升。 展开更多
关键词 视觉跟踪 TRANSFORMER 时空特征 自注意力 特征编码
在线阅读 下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部