A kind of turbo joint detection scheme based on parallel interference cancellation (PIC) is studied; then, the eigenvalues of iteration matrix is deeply analyzed for studying the ping-pong effects in PIC JD and the ...A kind of turbo joint detection scheme based on parallel interference cancellation (PIC) is studied; then, the eigenvalues of iteration matrix is deeply analyzed for studying the ping-pong effects in PIC JD and the corresponding compensation approach is introduced. Finally, the proposed algorithm is validated through computer simulation in TDD CDMA uplink transmission. The result shows that the ping-pong effects are almost avoided completely in the presence of the compensation scheme, and system performance is greatly improved.展开更多
Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom deg...Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar.展开更多
As the combining form of the orthogonal frequency-division multiplexing (OFDM) technique and the vertical Bell Labs layered space-time (V-BLAST) architecture, the V-BLAST OFDM system can better meet the demand of next...As the combining form of the orthogonal frequency-division multiplexing (OFDM) technique and the vertical Bell Labs layered space-time (V-BLAST) architecture, the V-BLAST OFDM system can better meet the demand of next-generation (NextG) broadband mobile wireless multimedia communications. The symbols detection problem of the V-BLAST OFDM system is investigated under the frequency-selective fading environment. The joint space-frequency demultiplexing operation is proposed in the V-BLAST OFDM system. Successively, one novel half-rate rotational invariance joint space-frequency coding scheme for the V-BLAST OFDM system is proposed. By elegantly exploiting the above rotational invariance property, we derive one direct symbols detection scheme without knowing channels state information (CSI) for the frequency-selective V-BLAST OFDM system. Extensive simulation results demonstrate the validity of the novel half-rate rotational invariance joint space-frequency coding scheme and the performance of the direct symbols detection scheme.展开更多
针对传统固定发射策略的主动声呐在水声信道中面临环境适配性不足,导致探测稳定性差的问题,本文提出一种基于多智能体强化学习的主动声呐发射波形与声源级的联合优化方法。采用多智能体协作学习方法,将发射波形优化与声源级优化解耦为...针对传统固定发射策略的主动声呐在水声信道中面临环境适配性不足,导致探测稳定性差的问题,本文提出一种基于多智能体强化学习的主动声呐发射波形与声源级的联合优化方法。采用多智能体协作学习方法,将发射波形优化与声源级优化解耦为多个智能体任务。引入奖励塑形方法,抑制多峰信道频谱引起的奖励信号噪声,提升智能体寻优能力,并避免子脉冲频点冲突。此外,使用双深度Q网络-Network(double deep q-network,DDQN),降低智能体Q值估计偏差并提升决策稳定性。在基于南海实测声速梯度重构的典型深海信道场景下进行了数值验证,结果表明:经所提算法优化后的信道适配度与回波信噪比调控准确性均优于对比算法,为构建具备环境自适应能力的智能主动声呐系统提供了一种可行的技术途径。展开更多
文摘A kind of turbo joint detection scheme based on parallel interference cancellation (PIC) is studied; then, the eigenvalues of iteration matrix is deeply analyzed for studying the ping-pong effects in PIC JD and the corresponding compensation approach is introduced. Finally, the proposed algorithm is validated through computer simulation in TDD CDMA uplink transmission. The result shows that the ping-pong effects are almost avoided completely in the presence of the compensation scheme, and system performance is greatly improved.
基金supported by the National Natural Science Fundation of China (61671137)。
文摘Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar.
文摘As the combining form of the orthogonal frequency-division multiplexing (OFDM) technique and the vertical Bell Labs layered space-time (V-BLAST) architecture, the V-BLAST OFDM system can better meet the demand of next-generation (NextG) broadband mobile wireless multimedia communications. The symbols detection problem of the V-BLAST OFDM system is investigated under the frequency-selective fading environment. The joint space-frequency demultiplexing operation is proposed in the V-BLAST OFDM system. Successively, one novel half-rate rotational invariance joint space-frequency coding scheme for the V-BLAST OFDM system is proposed. By elegantly exploiting the above rotational invariance property, we derive one direct symbols detection scheme without knowing channels state information (CSI) for the frequency-selective V-BLAST OFDM system. Extensive simulation results demonstrate the validity of the novel half-rate rotational invariance joint space-frequency coding scheme and the performance of the direct symbols detection scheme.
文摘针对传统固定发射策略的主动声呐在水声信道中面临环境适配性不足,导致探测稳定性差的问题,本文提出一种基于多智能体强化学习的主动声呐发射波形与声源级的联合优化方法。采用多智能体协作学习方法,将发射波形优化与声源级优化解耦为多个智能体任务。引入奖励塑形方法,抑制多峰信道频谱引起的奖励信号噪声,提升智能体寻优能力,并避免子脉冲频点冲突。此外,使用双深度Q网络-Network(double deep q-network,DDQN),降低智能体Q值估计偏差并提升决策稳定性。在基于南海实测声速梯度重构的典型深海信道场景下进行了数值验证,结果表明:经所提算法优化后的信道适配度与回波信噪比调控准确性均优于对比算法,为构建具备环境自适应能力的智能主动声呐系统提供了一种可行的技术途径。