期刊文献+
共找到9,825篇文章
< 1 2 250 >
每页显示 20 50 100
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
1
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
Effects of silica fume on the multi-scale material properties of composite Portland cement-based cutoff wall backfill
2
作者 ZHOU Tan HU Jian-hua +2 位作者 ZHAO Feng-wen GUO Meng-meng XUE Sheng-guo 《Journal of Central South University》 2025年第1期205-219,共15页
Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutof... Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutoff wall.To enhance its performance,this study developed a silica fume-SCB(SSCB).The macroscopic and microscopic properties of SSCB were assessed by unconfined compressive strength test,variable head permeability test,X-ray diffraction(XRD),scanning electron microscopy(SEM)and nuclear magnetic resonance(NMR)spectroscopy.The correlation between its multi-scale properties was analyzed based on pore characteristics.The results indicate that increasing the silica fume substitution ratio improved SSCB strength,especially in the middle and late curing stages.Moreover,increasing the substitution ratio decreased SSCB permeability coefficient,with a more pronounced effect in earlier curing stages.Silica fume addition also refined SSCB pore structure and reduced its porosity.The fractal dimension was used to quantify SSCB pore structure complexity.Increasing silica fume content reduced small pore fractal dimension in SSCB.Concurrently,SSCB strength increased and SSCB permeability coefficient decreased.The findings of this research will demonstrate the great potential of SSCB backfill for practical applications. 展开更多
关键词 silica fume SSCB cutoff wall multi-scale material properties engineering properties microscopic mechanism
在线阅读 下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
3
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
在线阅读 下载PDF
Disparity estimation for multi-scale multi-sensor fusion
4
作者 SUN Guoliang PEI Shanshan +2 位作者 LONG Qian ZHENG Sifa YANG Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期259-274,共16页
The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results ... The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation. 展开更多
关键词 stereo vision light deterction and ranging(LiDAR) multi-sensor fusion multi-scale fusion disparity map
在线阅读 下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
5
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement Generative adversarial network multi-scale feature extraction Residual dense block
在线阅读 下载PDF
Unconditionally stable Crank-Nicolson algorithm with enhanced absorption for rotationally symmetric multi-scale problems in anisotropic magnetized plasma
6
作者 WEN Yi WANG Junxiang XU Hongbing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期65-73,共9页
Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is ... Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation. 展开更多
关键词 anisotropic magnetized plasma body-of-revolution(BOR) Crank-Nicolson Douglas-Gunn(CNDG) finite-difference time-domain(FDTD) perfectly matched layer(PML) rotationally symmetric multi-scale problems
在线阅读 下载PDF
Multi-scale Graph-matching Based Kernel for Character Recognition from Natural Scenes 被引量:2
7
作者 Cun-Zhao SHI Chun-Heng WANG +2 位作者 Bai-Hua XIAO Yang ZHANG Song GAO 《自动化学报》 EI CSCD 北大核心 2014年第4期751-756,共6页
认出从自然景色图象提取的字符由于 intraclass 变化的高度是相当挑战性的。在这份报纸,我们为景色特性识别建议一个多尺度的匹配图的基于的核。以便捕获人物的内在地特殊的结构,每幅图象被与多尺度的图象格子联系的几张图代表。当也... 认出从自然景色图象提取的字符由于 intraclass 变化的高度是相当挑战性的。在这份报纸,我们为景色特性识别建议一个多尺度的匹配图的基于的核。以便捕获人物的内在地特殊的结构,每幅图象被与多尺度的图象格子联系的几张图代表。当也越过邻近的节点保存空间一致性时,二幅图象的类似被匹配二张图(图象) 因此定义为最佳精力,它在图为每个节点发现最好的火柴。计算类似是合适的为支持向量机器(SVM ) 构造一个核。与多尺度的格子匹配图获得的多重核被联合以便最后的核是更柔韧的。挑战性的 Chars74k 和 ICDAR03-CH 数据集上的试验性的结果证明建议方法比现状方法更好表现。 展开更多
关键词 字符识别 自然场景 多尺度 内核 配基 场景图 图形表示 最佳匹配
在线阅读 下载PDF
Iterated rational quadratic kernel-High-order unscented Kalman filtering algorithm for spacecraft tracking
8
作者 Xinru Liang Changsheng Gao +1 位作者 Wuxing Jing Ruoming An 《Defence Technology(防务技术)》 2025年第3期238-250,共13页
The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the ... The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the uncertain,complex,and strongly coupled non-Gaussian detection noise.As a result,there are several intractable considerations on the problem of state estimation tasks corrupted by complex non-Gaussian outliers for non-linear dynamics systems in practical application.To address these issues,a new iterated rational quadratic(RQ)kernel high-order unscented Kalman filtering(IRQHUKF)algorithm via capturing the statistics to break through the limitations of the Gaussian assumption is proposed.Firstly,the characteristic analysis of the RQ kernel is investigated in detail,which is the first attempt to carry out an exploration of the heavy-tailed characteristic and the ability on capturing highorder moments of the RQ kernel.Subsequently,the RQ kernel method is first introduced into the UKF algorithm as an error optimization criterion,termed the iterated RQ kernel-UKF(RQ-UKF)algorithm by derived analytically,which not only retains the high-order moments propagation process but also enhances the approximation capacity in the non-Gaussian noise problem for its ability in capturing highorder moments and heavy-tailed characteristics.Meanwhile,to tackle the limitations of the Gaussian distribution assumption in the linearization process of the non-linear systems,the high-order Sigma Points(SP)as a subsidiary role in propagating the state high-order statistics is devised by the moments matching method to improve the RQ-UKF.Finally,to further improve the flexibility of the IRQ-HUKF algorithm in practical application,an adaptive kernel parameter is derived analytically grounded in the Kullback-Leibler divergence(KLD)method and parametric sensitivity analysis of the RQ kernel.The simulation results demonstrate that the novel IRQ-HUKF algorithm is more robust and outperforms the existing advanced UKF with respect to the kernel method in reentry vehicle tracking scenarios under various noise environments. 展开更多
关键词 kernel method Rational quadratic(RQ)kernel High-order sigma points SPACECRAFT Reentry vehicles
在线阅读 下载PDF
基于GPGPU-sim的多kernel场景下GPGPU性能优化实验方法
9
作者 张军 魏继桢 +2 位作者 沈凡凡 谭海 何炎祥 《实验技术与管理》 CAS 北大核心 2024年第7期87-93,共7页
该文介绍了基于GPGPU-sim的多kernel环境下GPGPU性能优化实验方法,旨在为初学者开展多kernenl场景下GPGPU性能优化研究提供实验方法参考,也能为计算机系统结构教学提供案例。文中重点分析讨论了基于GPGPU-sim模拟器、多kernel场景下的... 该文介绍了基于GPGPU-sim的多kernel环境下GPGPU性能优化实验方法,旨在为初学者开展多kernenl场景下GPGPU性能优化研究提供实验方法参考,也能为计算机系统结构教学提供案例。文中重点分析讨论了基于GPGPU-sim模拟器、多kernel场景下的一种自适应线程块调度方法的改进思想、实验方法及过程,还对GPGPU的微系统结构、GPGPU-sim模拟器及源代码结构进行了介绍。实验结果表明,该文阐述的实验方法可行,相对于基准方法,该文提出的改进策略可以提升多kernel场景下GPGPU的执行效率。 展开更多
关键词 kernel场境 GPGPU GPGPU-sim 性能优化
在线阅读 下载PDF
An algorithm for segmentation of lung ROI by mean-shift clustering combined with multi-scale HESSIAN matrix dot filtering 被引量:7
10
作者 魏颖 李锐 +1 位作者 杨金柱 赵大哲 《Journal of Central South University》 SCIE EI CAS 2012年第12期3500-3509,共10页
A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN ... A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%. 展开更多
关键词 HESSIAN matrix multi-scale dot filtering mean-shift clustering segmentation of suspected areas lung computer-aideddetection/diagnosis
在线阅读 下载PDF
Fast-armored target detection based on multi-scale representation and guided anchor 被引量:6
11
作者 Fan-jie Meng Xin-qing Wang +2 位作者 Fa-ming Shao Dong Wang Xiao-dong Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期922-932,共11页
Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firs... Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved. 展开更多
关键词 RED image RPN Fast-armored target detection based on multi-scale representation and guided anchor
在线阅读 下载PDF
Attention mechanism based multi-scale feature extraction of bearing fault diagnosis 被引量:4
12
作者 LEI Xue LU Ningyun +2 位作者 CHEN Chuang HU Tianzhen JIANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1359-1367,共9页
Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearin... Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearing fault diagnosis under multiple conditions is a new subject,which needs to be further explored.Therefore,a multi-scale deep belief network(DBN)method integrated with attention mechanism is proposed for the purpose of extracting the multi-scale core features from vibration signals,containing four primary steps:preprocessing of multi-scale data,feature extraction,feature fusion,and fault classification.The key novelties include multi-scale feature extraction using multi-scale DBN algorithm,and feature fusion using attention mecha-nism.The benchmark dataset from University of Ottawa is applied to validate the effectiveness as well as advantages of this method.Furthermore,the aforementioned method is compared with four classical fault diagnosis methods reported in the literature,and the comparison results show that our pro-posed method has higher diagnostic accuracy and better robustness. 展开更多
关键词 bearing fault diagnosis multiple conditions atten-tion mechanism multi-scale data deep belief network(DBN)
在线阅读 下载PDF
Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting 被引量:16
13
作者 李一兵 葛娟 +1 位作者 林云 叶方 《Journal of Central South University》 SCIE EI CAS 2014年第11期4254-4260,共7页
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m... In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value. 展开更多
关键词 emitter recognition multi-scale wavelet entropy feature weighting uneven weight factor stability weight factor
在线阅读 下载PDF
Vibration analysis of fluid-conveying multi-scale hybrid nanocomposite shells with respect to agglomeration of nanofillers 被引量:2
14
作者 Farzad Ebrahimi Ali Dabbagh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期212-225,共14页
The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consis... The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consistent material is considered to be made from an initial matrix strengthened via both macro-and nano-scale reinforcements.The influence of nanofillers’agglomeration,generated due to the high surface to volume ratio in nanostructures,is included by implementing Eshelby-Mori-Tanaka homogenization scheme.Afterwards,the equivalent material properties of the carbon nanotube reinforced(CNTR)nanocomposite are coupled with those of CFs within the framework of a modified rule of mixture.On the other hand,the influences of viscous flow are covered by extending the Navier-Stokes equation for cylinders.A cylindrical coordinate system is chosen and mixed with the infinitesimal strains of first-order shear deformation theory of shells to obtain the motion equations on the basis of the dynamic form of principle of virtual work.Next,the achieved governing equations will be solved by Galerkin’s method to reach the natural frequency of the structure for both simply supported and clamped boundary conditions.Presenting a set of illustrations,effects of each parameter on the dimensionless frequency of nanocomposite shells will be shown graphically. 展开更多
关键词 Vibration Agglomeration effect multi-scale hybrid nanocomposites Galerkin’s solution Viscous fluid flow
在线阅读 下载PDF
Multi-scale and multi-fractal analysis of pressure fluctuation in slurry bubble column bed reactor 被引量:1
15
作者 王兴军 胡立舜 +3 位作者 沈军杰 余志楠 王辅臣 于遵宏 《Journal of Central South University of Technology》 EI 2007年第5期696-700,共5页
The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and th... The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and the 9th scale approximation signals. The pressure signals were studied by multi-scale and R/S analysis method. Hurst analysis method was applied to analyze multi-fractal characteristics of different scale signals. The results show that the characteristics of mono-fractal under scale 1 and scale 2, and bi-fractal under scale 3?9 are effective in deducing the hydrodynamics in slurry bubbling flow system. The measured pressure signals are decomposed to micro-scale signals, meso-scale signals and macro-scale signals. Micro-scale and macro-scale signals are of mono-fractal characteristics, and meso-scale signals are of bi-fractal characteristics. By analyzing energy distribution of different scale signals,it is shown that pressure fluctuations mainly reflects meso-scale interaction between the particles and the bubble. 展开更多
关键词 pressure fluctuation R/S analysis multi-scale MULTI-FRACTAL bubble column bed reactor
在线阅读 下载PDF
我国护理人力资源区域差异的演变特征——基于Dagum基尼系数分解和Kernel核密度估计的实证研究 被引量:1
16
作者 王佳怡 沈芸 +2 位作者 朱燕 宋天敕 陈洁婷 《军事护理》 CSCD 北大核心 2024年第11期90-94,共5页
目的分析我国护理人力资源的区域差异及分布动态演进,为我国护理人力资源的合理配置和规划提供参考。方法基于2011-2022年省级护理人力资源面板数据,通过测算Kernel密度和Dagum基尼系数对我国护理人力资源的区域差异及分布动态演进进行... 目的分析我国护理人力资源的区域差异及分布动态演进,为我国护理人力资源的合理配置和规划提供参考。方法基于2011-2022年省级护理人力资源面板数据,通过测算Kernel密度和Dagum基尼系数对我国护理人力资源的区域差异及分布动态演进进行分析评价。结果2011-2022年,在空间分布上,全国及各地区护理人力资源总量呈增加趋势,各区域差异逐步降低,且两极化特征明显;在区域差异上,我国护理人力资源总体差异均值为0.1149;区域内呈东部>西部>中部>东北区域的梯度逐步递增趋势;区域间差异占总体差异的40.61%。结论全国护理人力资源总体差异处于相对合理状态,区域间差异是主要来源,均等化水平逐步提升;政府应针对各区域精准施策,进一步稳定护理人力资源队伍,完善护理人力资源结构以促进护理人力资源的优质均衡发展。 展开更多
关键词 护理人力资源 区域差异 Dagum基尼系数 kernel密度估计
在线阅读 下载PDF
Multi-scale regionalization based mining of spatio-temporal teleconnection patterns between anomalous sea and land climate events
17
作者 XU Feng SHI Yan +3 位作者 DENG Min GONG Jian-ya LIU Qi-liang JIN Rui 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2438-2448,共11页
Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-de... Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate. 展开更多
关键词 CLIMATE sequences ANOMALOUS climatic EVENTS SPATIO-TEMPORAL teleconnection patterns multi-scale REGIONALIZATION
在线阅读 下载PDF
农业新质生产力:水平测度、区域差异及时空演进 被引量:1
18
作者 王聪聪 问乔伊 王俊芹 《统计与决策》 北大核心 2025年第12期11-17,共7页
培育和发展农业新质生产力,是推动农业高质量发展、建设农业强国的必然要求。文章从新型农业劳动者、新型农业劳动资料、新型农业劳动对象、新型农业生产方式、新型农业组织形式5个维度构建农业新质生产力水平评价指标体系,采用熵权-TOP... 培育和发展农业新质生产力,是推动农业高质量发展、建设农业强国的必然要求。文章从新型农业劳动者、新型农业劳动资料、新型农业劳动对象、新型农业生产方式、新型农业组织形式5个维度构建农业新质生产力水平评价指标体系,采用熵权-TOPSIS法测度农业新质生产力水平,并利用障碍因子诊断模型、Dagum基尼系数及其分解法、Kernel密度估计法、莫兰指数探究农业新质生产力发展的障碍因素、区域差异和时空分异特征。研究发现:(1)我国农业新质生产力水平稳步上升,新型农业劳动资料是促进其上升的关键;农业新质生产力水平在区域层面呈“东部>中部>东北>西部”的分布格局。电商农业发展水平、农用智能航空器数量及人均示范家庭农场数量是现阶段农业新质生产力发展的主要制约因素。(2)区域相对差异逐步缩小,区域间差异是主要来源,尤以东部-东北的区域间差异最大;与其他地区相比,东部地区内差异更明显。(3)区域绝对差异不断扩大,呈“优者更优”的非均衡发展特征,空间正相关性显著,呈现以“低-低”集聚为主的空间分布格局。 展开更多
关键词 农业新质生产力 障碍因子识别 区域差异 kernel密度估计
在线阅读 下载PDF
共同富裕视域下城市经济高质量发展动态演进及驱动因子 被引量:1
19
作者 张伟丽 马自豪 +3 位作者 李建新 郑道霖 魏瑞博 覃成林 《地理科学》 北大核心 2025年第4期756-769,共14页
基于共同富裕目标界定并测算城市经济高质量发展水平,揭示其动态演进及驱动因子,有利于形成共同富裕的空间动能。本文采用纵横向拉开档次法测算城市经济高质量发展水平并进一步分析其分布演进及驱动力量,发现:(1)城市经济高质量发展水... 基于共同富裕目标界定并测算城市经济高质量发展水平,揭示其动态演进及驱动因子,有利于形成共同富裕的空间动能。本文采用纵横向拉开档次法测算城市经济高质量发展水平并进一步分析其分布演进及驱动力量,发现:(1)城市经济高质量发展水平整体呈上升趋势,东部高水平城市发挥“溢出效应”向周边城市辐射,中部城市“追赶效应”显著,西部城市正处在震荡阶段,东北城市亟待遏制发展颓势。(2)全国和4大区域均在相对经济高质量发展水平[0.93,0.99]内转移概率由向上转为向下。东部高水平城市抵御下行能力较强,西部向上转移概率略低于全国,东北向上转移潜力羸弱,未来全国城市“东优西次,南强北弱”的不均衡现象仍将存在。(3)创新活力直接推动城市经济高质量发展,产业协调和服务共享是重要渠道,生态文明和开放互联起次要作用,增收共促具有间接作用,且各因子交互也驱动城市经济高质量发展。4大区域的城市经济高质量发展主要依赖创新活力和产业协调驱动,东部和中部以创新活力为主导,西部的创新活力和服务共享交互作用较强,东北则突出产业协调对生态文明和服务共享的积极影响。不同规模城市中,创新活力是首要驱动,超大城市依赖其与生态文明、产业协调的交互作用,大城市依赖创新活力与生态文明合作,而中小城市则依赖其与服务共享、产业协调的交互作用。 展开更多
关键词 共同富裕 城市经济高质量发展 空间kernel密度估计 地理探测器
在线阅读 下载PDF
多尺度大核注意力遥感图像语义分割实验设计
20
作者 项学智 宁怡博 +2 位作者 王路 贲晛烨 乔玉龙 《实验室研究与探索》 北大核心 2025年第10期56-62,共7页
针对遥感图像语义分割任务中卷积神经网络(CNN)远程建模能力不足与Transformer计算复杂度过高的问题,提出一种基于多尺度大核注意力(MSLKA)的遥感图像语义分割网络MSLKASeg。MSLKA将多尺度机制与大核注意力(LKA)相结合,并引入门控机制... 针对遥感图像语义分割任务中卷积神经网络(CNN)远程建模能力不足与Transformer计算复杂度过高的问题,提出一种基于多尺度大核注意力(MSLKA)的遥感图像语义分割网络MSLKASeg。MSLKA将多尺度机制与大核注意力(LKA)相结合,并引入门控机制以抑制无关信息,能在保持较低复杂度的同时,生成多粒度级别的注意力图,从而有效聚合全局和局部信息。在两个典型数据集实验表明,所提方法取得了具有竞争力的结果。在ISPRS Vaihingen数据集上,mF1和mIoU得分分别达到了90.31%和82.73%;在LoveDA Urban数据集,mF1和mIoU得分分别为66.24%和50.41%。多场景实验结果表明,所提方法有效提升了遥感图像语义分割效果。 展开更多
关键词 遥感图像 语义分割 多尺度大核 大核注意力
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部