The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing ch...A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing characteristics of pulse parameters in radar emitter signals.The features can be applied in modern complex electronic warfare environment to address the issue of signal sorting when radar emitter pulse signal parameters severely or even completely overlap.Experiment results show that the proposed feature class and feature extraction method can discriminate periodically changing pulse sequence signal sorting features from radar pulse signal flow with complex variant features,therefore provide a new methodology for signal sorting.展开更多
In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swa...In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs.展开更多
The non-linear dynamic theory brought a new method for recognizing and predicting complex non-linear dynamic behaviors. The non-linear behavior of vibration signals can be described by using fractal dimension quantita...The non-linear dynamic theory brought a new method for recognizing and predicting complex non-linear dynamic behaviors. The non-linear behavior of vibration signals can be described by using fractal dimension quantitatively. In this paper, a fractal dimension calculation method for discrete signals in the fractal theory was applied to extract the fractal dimension feature vectors and classified various fault types. Based on the wavelet packet transform, the energy feature vectors were extracted after the vibration signal was decomposed and reconstructed. Then, a wavelet neural network was used to recognize the mechanical faults. Finally, the fault diagnosis for a wind power system was taken as an example to show the method's feasibility.展开更多
利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分...利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分析耕地和其他土地利用类型的分形特征,选取上分形信号的第3尺度作为特征尺度,提取商河县耕地空间分布特征;其次采用同时期的土地利用矢量数据、Esri land cover数据和统计数据进行耕地信息提取精度评价;最后分别设置多季相分形提取与单季相分形提取、现有土地利用数据产品的对比实验,并基于点位匹配度和面积匹配度进行评价。结果表明:多季相数据更能反映农作物生长的复杂性,有助于提高耕地信息的提取精度;不同土地利用类型在不同分形尺度的信号值各不相同,分形特征可以在不同尺度上清晰地刻画出不同土地利用类型的分异性;基于矢量数据和Esri land cover数据评价的多季相分形特征耕地提取点位匹配度为87.13%和89.83%,面积匹配度为99.73%和97.91%,均比单季相分形提取结果精度高;综合考虑点位匹配度、面积匹配度和空间分布特征,研发方法能有效区分耕地和其他土地利用类型,提取结果更优,且与统计数据有更高的一致性。该方法可准确提取耕地信息,为耕地的动态监测和损害评估提供技术支撑。展开更多
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
基金supported by the National Natural Science Foundation of China (60872108)the Postdoctoral Science Foundation of China(200902411+3 种基金20080430903)Heilongjiang Postdoctoral Financial Assistance (LBH-Z08129)the Scientific and Technological Creative Talents Special Research Foundation of Harbin Municipality (2008RFQXG030)Central University Basic Research Professional Expenses Special Fund Project
文摘A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing characteristics of pulse parameters in radar emitter signals.The features can be applied in modern complex electronic warfare environment to address the issue of signal sorting when radar emitter pulse signal parameters severely or even completely overlap.Experiment results show that the proposed feature class and feature extraction method can discriminate periodically changing pulse sequence signal sorting features from radar pulse signal flow with complex variant features,therefore provide a new methodology for signal sorting.
文摘In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs.
基金Sponsored by the National Science Foundation (61004118)the Natural Science Foundation Project of CQ CSTC (2011A70007)+1 种基金the Science and Technology Research Project of Chongqing Municipal Education Commission (KJ120422)the Science Foundation Project of Chongqing Jiaotong University Open Research Fund of Key Laboratory of Bridge Structural Engineering of Chongqing Jiaotong University (CQSLBF-Y11-5)
文摘The non-linear dynamic theory brought a new method for recognizing and predicting complex non-linear dynamic behaviors. The non-linear behavior of vibration signals can be described by using fractal dimension quantitatively. In this paper, a fractal dimension calculation method for discrete signals in the fractal theory was applied to extract the fractal dimension feature vectors and classified various fault types. Based on the wavelet packet transform, the energy feature vectors were extracted after the vibration signal was decomposed and reconstructed. Then, a wavelet neural network was used to recognize the mechanical faults. Finally, the fault diagnosis for a wind power system was taken as an example to show the method's feasibility.
文摘利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分析耕地和其他土地利用类型的分形特征,选取上分形信号的第3尺度作为特征尺度,提取商河县耕地空间分布特征;其次采用同时期的土地利用矢量数据、Esri land cover数据和统计数据进行耕地信息提取精度评价;最后分别设置多季相分形提取与单季相分形提取、现有土地利用数据产品的对比实验,并基于点位匹配度和面积匹配度进行评价。结果表明:多季相数据更能反映农作物生长的复杂性,有助于提高耕地信息的提取精度;不同土地利用类型在不同分形尺度的信号值各不相同,分形特征可以在不同尺度上清晰地刻画出不同土地利用类型的分异性;基于矢量数据和Esri land cover数据评价的多季相分形特征耕地提取点位匹配度为87.13%和89.83%,面积匹配度为99.73%和97.91%,均比单季相分形提取结果精度高;综合考虑点位匹配度、面积匹配度和空间分布特征,研发方法能有效区分耕地和其他土地利用类型,提取结果更优,且与统计数据有更高的一致性。该方法可准确提取耕地信息,为耕地的动态监测和损害评估提供技术支撑。